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Abstract— We present a framework based on multiple Lya-
punov functions to find probabilistic data-driven guarantees on
the stability of unknown constrained switching linear systems
(CSLS), which are switching linear systems whose switching
signal is constrained by an automaton. The stability of a
CSLS is characterized by its constrained joint spectral ra-
dius (CJSR). Inspired by the scenario approach and previous
work on unconstrained switching systems, we characterize the
number of observations needed to find sufficient conditions on
the (in-)stability of a CSLS using the notion of CJSR. More
precisely, our contribution is the following: we derive a proba-
bilistic upper bound on the CJSR of an unknown CSLS from
a finite number of observations. We also derive a deterministic
lower bound on the CJSR. From this we obtain a probabilistic
method to characterize the stability of an unknown CSLS.

I. INTRODUCTION

Due to major technological upheavals, the complexity of
many dynamical systems has dramatically increased in recent
years, thus making their control more and more challenging.
The academic community has coined this paradigm shift
under the name of the Cyber-Physical revolution (see [1]–
[5]). In particular, Hybrid systems, which often appear in
Cyber-Physical applications, are dynamical systems whose
dynamics are characterized by continuous and discrete be-
haviours.

In many practical applications, the engineer cannot rely on
having a model, but rather has to analyse the underlying
black-box system in a data-driven fashion. Most classical
data-driven methods (see e.g. [6]–[8]) are limited to linear
systems and rely on classical identification and frequency-
domain approaches. These methods may not well suited for
Cyber-Physical systems because of the natural complexity
of these systems. Novel black-box stability analysis methods
have been recently developed based on scenario optimization
(see [9]–[11]). In this paper we seek to take one more step
towards complexity.

We consider black-box stability analysis of discrete-time
switching linear systems. Dynamics of a switching linear
system defined by a set of matrices Σ = {Ai}i∈{1,...,m}
is given by the following equation:

xt+1 = Aσ(t)xt (1)
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for any t ∈ N, where xt ∈ Rn and σ(t) ∈ {1, . . . ,m} are
respectively the state and the mode at time t. The sequence
(σ(0), σ(1), . . . ) ⊆ {1, . . . ,m}N is the switching sequence.

Switching linear systems are an important family of hybrid
systems which often arise in Cyber-Physical systems (see
[12]). Stability analysis of switching linear systems is chal-
lenging due to the hybrid behaviour caused by the switches.
In recent years, many white-box stability analysis techniques
have been proposed (see [13], [14] and references therein).

In particular, we are interested in the stability of constrained
switching linear systems (CSLS for short). A CSLS is a
switching linear system with logical rules on its switching
sequence. We represent these rules by an automaton (see
Definition 2.1). White-box stability of CSLS has also been
studied extensively (see e.g. [15]–[17]). In particular, we are
interested in asymptotic stability of CSLS, whose definition
is given as follows. Given an automaton G and a set of
matrices Σ, the system S(G,Σ) is said to be asymptotically
stable (or stable, for short) if, for all x ∈ Rn and for all
infinite words (σ(0), σ(1), . . . ) accepted by G,

lim
t→∞

Aσ(t−1) . . . Aσ(0)x = 0. (2)

In this work we extend the approaches in [9]–[11] by consid-
ering a hybrid state space. For a CSLS S(G(V,E),Σ), we
consider that one can observe points in Rn×V i.e., couples
of continuous states and discrete nodes. This allows us to
find probabilistic guarantees for the asymptotic stability of
CSLS whose dynamics is unknown.

Outline. The rest of this paper is organized as follows.
We introduce the problem that we tackle in Section II,
as well as all concepts needed to this end. We present
our results in Section III. We first propose a black-box
formulation allowing us to do this in a data-driven fashion.
We then propose a deterministic method to find sufficient
condition for instability of black-box CSLS. Finally we find
probabilistic guarantees on the stability of a CSLS whose
dynamics are unknown. Results are illustrated on a numerical
example in Section IV.

Notations. We respectively denote the set of all nonnega-
tive and positive real number by R≥0 and R>0. We also
respectively denote by Sn

+ and Sn
++ the set of all positive

semi-definite and positive definite symmetric matrices. For
any matrix A ∈ Rn×n, we write A ≻ 0 to state that A is
positive definite, and A ⪰ 0 to state that it is positive semi-
definite. We denote by ∥ · ∥ the l2 norm, and, for any matrix
A ∈ Sn, we define ∥ ·∥A : Rn → R≥0 : x 7→

√
xTPx as the



ellipsoidal norm. Finally, S denotes the sphere of unit radius
centered at the origin.

II. PROBLEM SETTING

In this section, we introduce the notions necessary to for-
mally write the problem tackled in this paper.

A. Constrained joint spectral radius

We first define an automaton (see e.g. [18]):

Definition 2.1: An automaton is a strongly connected1, di-
rected and labelled graph G(V,E), where V is the set of
nodes and E the set of edges. Note that we drop the writing
of V and E when it is clear from the context. The edge
(u, v, σ) ∈ E between two nodes u, v ∈ V carries the label
σ ∈ {1, . . . ,m}, where m ∈ N is the number of labels.

In the context of CSLS, σ maps to a mode of the system. A
sequence of labels (σ(0), σ(1), . . . ) is a word in the language
accepted by the automaton G if there is a path in G carrying
the sequence as the succession of the labels on its edges. A
CSLS defined on the set of matrices Σ and constrained by
the automaton G is noted S(G,Σ).

Let us present an example of CSLS, inspired from [16,
Section 4], in order to illustrate the notions defined above.

Example 2.1: Consider a plant that may experience control
failures. Its dynamics is given by xt+1 = Aσ(t)xt where
Aσ(t) = A+BKσ(t) with

A =

(
0.47 0.28
0.07 0.23

)
and B =

(
0
1

)
. (3)

Kσ(t) is described as follows. K1 =
(
k1 k2

)
with k1 =

−0.245 and k2 = 0.135, corresponds to the mode where
the controller works as expected. K2 =

(
0 k2

)
and K3 =(

k1 0
)

respectively correspond to the modes when the first
and the second part of the controller fails. And K4 =

(
0 0

)
corresponds to the mode when both parts fail. We consider
as a constraint that the same part of the controller never
fails twice in a row. This is modelled by the automaton G,
depicted in Figure 2.1.
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Fig. 1. Automaton G. No mode can fail twice in a row.

In this example, the considered CSLS is thus S(G,Σ) with
Σ = {A1, A2, A3, A4}.

1A strongly connected graph is a graph that has a path from each vertex
to every other vertex. See [18, Definition 2.2.13] for a formal definition.

The constrained joint spectral radius, introduced in [15], is
defined as follows:

Definition 2.2 ( [15, Definition 1.2]): Given a set of matri-
ces Σ = {A1, . . . , Am} and an automaton G whose labels
are σ ∈ {1, . . . ,m}, the constrained joint spectral radius
(CJSR for short) of the CSLS S(G,Σ) is defined as

ρ(G,Σ) = lim
t→∞

max{∥Aσ(t−1) . . . Aσ(0)∥1/t :

(σ(0), . . . , σ(t− 1)) is a word of G}.
(4)

As the following proposition shows, the CJSR characterizes
the stability of a CSLS:

Proposition 2.1 ( [15, Corollary 2.8]): Given a set of ma-
trices Σ and an automaton G, the CSLS S(G,Σ) is asymp-
totically stable if and only if ρ(G,Σ) < 1.

B. Multiple Quadratic Lyapunov Functions

We present a classical result from model-based analysis of
CSLS. The following proposition gives a quadratic frame-
work for approximating the CJSR of a given CSLS:

Proposition 2.2 ( [19, Proposition 2.20]): Consider a CSLS
S(G(V,E),Σ) and a constant γ > 0. If there exists a set
of quadratic forms {Pi, i ∈ V } ⊂ Sn

+ satisfying the set of
Linear Matrix Inequalities (LMIs)

∀(u, v, σ) ∈ E : AT
σPvAσ ⪯ γ2Pu, (5)

then n−1/2γ ≤ ρ(G,Σ) ≤ γ.

If γ < 1, the set of norms {∥ · ∥Pu , u ∈ V } is called
a set of Multiple Quadratic Lyapunov Functions (MQLF).
Proposition 2.2 thus gives a sufficient condition for the
stability of a given CSLS using MQLF.

Consider a given CSLS S(G(V,E),Σ). Let ∆ = S × E.
As a preparation to develop our data-driven approach, we
reformulate the stability condition in Proposition 2.2 into a
robust optimization problem2:

P(∆) : min
{Pu, u∈V }⊂Sn

++

γ≥0

γ (6a)

s.t. ∀(x, (u, v, σ)) ∈ ∆ : (Aσx)
TPv(Aσx) ≤ γ2xTPux

(6b)

We denote by γ∗(∆) and {P ∗
u (∆), u ∈ V } the solution

of P(∆). Following Proposition 2.2, if γ∗(∆) < 1, the set
{P ∗

u (∆), u ∈ V } is a set of MQLF.

The notation P(∆) emphasizes that the whole set of con-
straints is known in this white-box formulation, in opposition
to the white-box problem P(ωN ) defined in (8).

2Note that we can restrict x to the unit sphere S in constraint (6b). We
can do this thanks to the homogeneity of the CSLS: for any x ∈ Rn, µ > 0,
and A ∈ Σ, it holds that A(µx) = µAx.



III. MAIN RESULTS

A. White-box formulation

In this paper, we analyze the problem of approximating the
CJSR in a data-driven fashion: we assume that the system
is not known, hence problem P(∆) defined in Equation (6)
cannot be solved. We only sample a finite number N of
observations of a given CSLS S(G(V,E),Σ). One obser-
vation consists of an ordered pair of points in the state
space defined above i.e., Rn × V . The i-th observation is a
couple of initial and final points in Rn and nodes in V . It is
noted ((xi, ui), (yi, vi)) ∈ (Rn×V )2 where (ui, vi, σi) ∈ E
for some label σi ∈ {1, . . . ,m}, and yi = Aσi

xi. For
any i = 1, . . . , N , xi and (ui, vi, σi) are drawn randomly,
uniformly and independently from respectively S and E. We
attract the attention of the reader on the fact that the sampled
mode is not known.

Mathematically, the sample set ωN is defined from the
observations as

ωN = {(xi, (ui, vi, σi), i = 1, . . . , N}, (7)

where xi, ui, vi and σi are as described above. Note that ωN

is a subset of N elements of ∆.

Now, for a given set ωN , let us define the sampled optimiza-
tion problem P(ωN ):

P(ωN ) : min
{Pu, u∈V }⊂Sn

++

γ≥0

γ (8a)

s.t. ∀(x, (u, v, σ)) ∈ ωN : (Aσx)
TPv(Aσx) ≤ γ2xTPux

(8b)
∀u ∈ V : Pu ∈ {P : I ⪯ P ⪯ CI}, (8c)

for a large C ∈ R≥0. We denote by γ∗(ωN ) and
{P ∗

u (ωN ), u ∈ V } the solution of P(ωN ). The problem that
we tackle in this paper is the inference, with a user-defined
confidence level, of γ∗(∆), the solution of P(∆) defined in
Equation (6) from the solution of P(ωN ) defined in Equa-
tion (8) i.e., the value γ∗(ωN ) and the set {P ∗

u (ωN ), u ∈ V }.

Problem P(ωN ) defined in Equation (8) differs from P(∆)
defined in Equation (6) in two ways: the LMIs expressed
in constraint (8b) are restricted to ωN , and compactness
of the domain of the matrices {Pu, u ∈ V } ⊂ Sn

++ is
imposed in constraint (8c). We will need the latter to prove
Proposition 3.2.

B. Deterministic lower bound on the CJSR

In the same fashion as in [9], we derive a deterministic lower
bound on the CJSR:

Proposition 3.1: Let ωN be a set of N observations from ∆
as explained above. Consider the program P(ωN ) defined in
(8) for the CSLS S(G,Σ) with optimal cost γ∗(ωN ). Then
the following holds :

n−1/2γ∗(ωN ) ≤ ρ(G,Σ). (9)

Proof: Notice that P(ωN ) defined in (8) is a relaxation
of P(∆) defined in (6). As a consequence, we have γ∗(∆) ≥
γ∗(ωN ). Following Proposition 2.2,

ρ(G,Σ) ≥ n−1/2γ∗(∆) ≥ n−1/2γ∗(ωN ), (10)

which is the desired result.

Remark 3.1: One can show that the lower bound of Proposi-
tion 3.1 can be improved thanks to Sums-of-Squares approx-
imation methods, introduced in [20] for the approximation
of the joint spectral radius and generalized in [16] for the
CJSR.

C. Probabilistic upper bound on the CJSR

Proposition 3.2: Consider the program P(∆) for the CSLS
S(G(V,E),Σ) with optimal cost γ∗(∆). There exists a set
ω ⊂ ∆ with |ω| = |V |n(n+1)/2 such that γ∗(ω) = γ∗(∆),
where γ∗(ω) is the optimal cost of the program P(ω).

Proof: First, from the arguments in [11, Lemma 1], we
claim that there exists ω ⊂ ∆ with |ω| = |V |n(n+1)/2+1
such that γ∗(ω) = γ∗(∆). Now, we consider the problem
P(ω) as defined in (8). With a similar argument as the one in
[10, Theorem 2], we can conclude that the objective remains
unchanged removing one of the points in ω.

Remark 3.2: There are two main differences between Propo-
sition 3.2 and [11, Lemma 1]: the proposition is derived
for CSLS instead of arbitrary switching linear systems, and
the cardinality of the set is the number of variables of the
program minus 1, while it is the number of variables of the
program in [11].

Now, let us define the notion of spherical cap:

Definition 3.1 ( [21]): The spherical cap on S, the unit
sphere, of direction c and measure ε is defined as C(c, ε) :={
x ∈ S : cTx > ∥c∥δ(ε)

}
, where δ(ε) is defined as3

δ(ε) =
√
1− I−1 (2ε; (n− 1)/2, 1/2). (12)

The following proposition provides a bound on the conser-
vatism of the sampled problem P(ωN ) defined in (8), with
respect to the white-box problem P(∆) defined in (6) as a
function of N , the number of points sampled:

Proposition 3.3: Consider the program P(∆) for the CSLS
S(G(V,E),Σ) with optimal cost γ∗(∆), and where Σ con-
tains m modes. Let ωN = {(xi, (ui, vi, σi)), i = 1, . . . , N}
be a set of N samples from ∆ as explained above. Suppose
N ≥ |V |n(n+1)/2. Then, for all ε ∈ (0, 1], with probability
at least

β(ε,m,N) = 1− |V |n(n+ 1)

2

(
1− ε

m|V |

)N

, (13)

3In Equation (12), I−1(y; a, b) is the inversed regularized incomplete
beta function (see [22]). Its ouput is x > 0 such that I(x; a, b) = y, where
I is defined as

I(·; a, b) : R>0 → R>0 : x 7→ I(x; a, b) =

∫ x
0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

(11)



there exists a set ω′
N = {(x′

i, (ui, vi, σi)), i = 1, . . . , N} ⊂
∆ such that γ∗(ω′

N ) = γ∗(∆) with ∥xi−x′
i∥ ≤

√
2− 2δ(ε).

Proposition 3.3 is an extension of [11, Proposition 2] to
the constrained case. The two propositions differ in three
different ways. First the number of variables of the problem
is not the same. Second, given that the edges are sampled
uniformly (see Section II), the probability of sampling a
certain label σ is at least 1/(m|V |), while it is 1/m in the
unconstrained case. Third, Proposition 3.2 allows to improve
the probability β according to Remark 3.2.

We now apply a sensitivity analysis approach in order to
obtain from Proposition 3.3 a probabilistic upper bound on
γ∗(∆) the optimal cost of P(∆) (defined in Equation (6))
from the sampled optimal variables γ∗ωN and {P ∗

u (ωN ), u ∈
V } of P (ωN ) (defined in Equation (8)).

Theorem 3.4: Consider the program P(∆) defined in (6)
for the CSLS S(G(V,E),Σ) with optimal cost γ∗(∆). Let
ωN be a set of N samples from ∆ as explained in Sec-
tion III-A, with N ≥ |V |n(n+ 1)/2. Consider the sampled
program P(ωN ) defined in (8) with solution γ∗(ωN ) and
{P ∗

u (ωN ), u ∈ V }. For any β ∈ [0, 1), let

ε = m|V |

(
1− N

√
2(1− β)

|V |n(n+ 1)

)
. (14)

Then, with probability at least β,

γ∗(∆) ≤ γ∗(ωN )+

max
(x,(u,v,σ))∈ωN

{√
λu
max

λu
min

γ∗(ωN ) +

√
λv
max

λu
min

A(Σ)

}
d(ε),

(15)

with d(ε) =
√
2− 2δ(ε), λu

min and λu
max respectively the

minimal and maximal eigenvalue of P ∗
u (ωN ), and

A(Σ) = max
A∈Σ

∥A∥. (16)

Proof: For the sake of readibility, let γ = γ∗(ωN )
and Pu = P ∗

u (ωN ) for any u ∈ V . By definition, for any
(x, (u, v, σ)) ∈ ωN ,

∥Aσx∥Pv ≤ γ∥x∥Pu . (17)

Consider now for any P ∈ Sn its Cholesky decomposition
P = LTL, where Sn is the set of positive semi-definite
symmetric matrices. Then the following holds:

∥x∥P = ∥Lx∥ ≤ ∥L∥∥x∥ ≤
√
λmax(P )∥x∥, (18)

where λmax(P ) is the maximal eigenvalue of P . Let us
now consider an arbitrary constraint (y, (u, v, σ)) ∈ ∆, and
define y = x +∆x with (x, (u, v, σ)) ∈ ωN . Then, for any
(x, (u, v, σ)) ∈ ωN , following inequalities (17) and (18), and

using triangle and Cauchy–Schwarz inequalities, it holds that

∥Aσ(x+∆x)∥Pv
≤ ∥Aσx∥Pv

+ ∥Aσ∆x∥Pv

≤ γ∥x∥Pu
+ ∥Aσ∆x∥Pv

= γ∥(x+∆x)−∆x∥Pu
+ ∥Aσ∆x∥Pv

≤ γ∥x+∆x∥Pu
+ γ∥∆x∥Pu

+ ∥Aσ∆x∥Pv

≤ γ∥x+∆x∥Pu
+ γ∥∆x∥

√
λu
max

+ ∥Aσ∥∥∆x∥
√
λv
max

≤ γ∥x+∆x∥Pu
+ γ∥∆x∥

√
λu
max

∥x+∆x∥Pu√
λu
min

+ ∥Aσ∥∥∆x∥
√
λv
max

∥x+∆x∥Pu√
λu
min

=

[
γ +

(√
λu
max

λu
min

γ +

√
λv
max

λu
min

∥Aσ∥

)
∥∆x∥

]
∥x+∆x∥Pu .

(19)

For any β ∈ [0, 1), let ε be defined such as in Equation (14),
then, given that N ≥ |V |n(n + 1)/2, Proposition 3.3
guarantees the existence of a set ω′

N with N points such
that γ∗(ω′

N ) = γ∗(∆) with probability at least β, and such
that for any (x, (u, v, σ)) ∈ ωN , there exists ∆x such that
(x + ∆x, (u, v, σ)) ∈ ω′

N and ∥∆x∥ ≤ d(ε). Hence, by
definition and following Equation (19),

γ∗(∆) = γ∗(ω′
N )

≤ γ+

max
(x,(u,v,σ))∈ωN

{√
λu
max

λu
min

γ +

√
λv
max

λu
min

A(Σ)

}
d(ε),

(20)
with probability at least β.

D. Estimation of the maximal norm

In order to get a fully data-driven probabilistic bound as
expressed in Equation (20), it remains to approximate A(Σ)
as defined in Equation (16). First, note that the following
holds [14, Proposition 2.7]:

A(Σ) = η∗(∆)

= min
η≥0

η s.t. ∀(x, (u, v, σ)) ∈ ∆ : ∥Aσx∥ ≤ η. (21)

As it is assumed that Σ is not known, in this subsection,
we seek to find a probabilistic upper bound on the value of
A(Σ), from the given set of observations ωN . With the same
idea as in Section III-C, let us infer the value of η∗(∆) =
A(Σ) from the solution of its sampled problem

η∗(ωN ) = min
η≥0

η s.t. ∀(x, (u, v, σ)) ∈ ωN : ∥Aσx∥ ≤ η,

(22)
with a user-defined confidence level.

The general chance-constrained theorem [10, Theorem 6]
requires a technical assumption [10, Assumption 8] that can
be violated in our case. We give a proof for Theorem 3.5
allowing us to get rid of this assumption.



Theorem 3.5: Let ωN be a set of N samples from ∆ as
explained in Section III-A. Consider the solutions η∗(∆) and
η∗(ωN ) defined in equations (21) and (22) respectively. For
any β′ ∈ [0, 1), let

ε′ = 1− N
√

1− β′. (23)

Then, with probability at least β′,

η∗(∆) ≤ η∗(ωN )

δ(ε′m|V |/2)
. (24)

Proof: Let the violating set V (η) := {(x, (u, v, σ)) ∈
∆ : ∥Aσx∥ > η}, and let f : R → [0, 1] : η 7→ f(η) =
P[V (η)] be its measure. Note that f is decreasing. For any
ε′ ∈ [0, 1], we start by showing the following equation:

PN [ωN ⊂ ∆ : f(η∗(ωN )) ≤ ε′] = 1− (1− ε′)N . (25)

Consider one sampled constraint d ∈ ∆, and let ηε′ ∈ R be
such that f(ηε′) = ε′. Then P[d ∈ ∆ : f(η∗({d})) > ε′] =
P[d ∈ ∆ : f(η∗({d})) > f(ηε′)]. Since f is decreasing and
has [0, 1] as codomain, P[d ∈ ∆ : f(η∗({d})) > f(ηε′)] =
1− ε′, hence the following holds:

P[d ∈ ∆ : f(η∗({d})) > ε′] = 1− ε′. (26)

Since samples in ωN are i.i.d., the following holds:

PN [ωN ⊂ ∆ : f(η∗(ωN )) > ε′]

= (P[d ∈ ∆ : f(η∗({d})) > ε′])
N

=(1− ε′)N ,

(27)

which is equivalent to Equation (25).

Now, define the projected violating set S̃ ⊆ S as follows:

S̃ = {x ∈ S : ∃(u, v, σ) ∈ E, ∥Aσx∥ > η∗(ωN )}. (28)

For any (u, v, σ) ∈ E, we define:

S̃(u,v,σ) = {x ∈ S : ∥Aσx∥ > η∗(ωN )}. (29)

Thus, S̃ = ∪(u,v,σ)∈E S̃(u,v,σ). In the worst case, the
sets {S̃(u,v,σ)} are disjoint. In this case, Px[S̃] =∑

(u,v,σ)∈E Px[S̃(u,v,σ)] and

P[V (η)] =
∑

(u,v,σ)∈E

Px[S̃(u,v,σ)]PE [{(u, v, σ)}]

≥ 1

m|V |
∑

(u,v,σ)∈E

Px[S̃(u,v,σ)] =
Px[S̃]
m|V |

,
(30)

where Px and PE denote the uniform (probability) measure
on S and E respectively. This means that P[V (η)] ≤ ε′

implies Px[S̃] ≤ ε′m|V |.

Because of space constraints, we refer the reader to the proof
of [9, Theorem 15] for the end of this proof as it follows
similar lines.

Theorem 3.5 allows us to directly derive the following
corollary:

Corollary 3.1: Consider the program P(∆) defined in (6)
for the CSLS S(G(V,E),Σ) with optimal cost γ∗(∆). Let

ωN be a set of N samples from ∆ as explained in Sec-
tion III-A, with N ≥ |V |n(n+ 1)/2. Consider the sampled
program P(ωN ) defined in (8) with solution γ∗(ωN ) and
{P ∗

u (ωN ), u ∈ V }. For any β, β′ ∈ [0, 1), let

ε = m|V |

(
1− N

√
2(1− β)

|V |n(n+ 1)

)
, (31)

and
ε′ =

m

2

(
1− N

√
1− β′

)
. (32)

Then, with probability at least β + β′ − 1,

ρ(G,Σ) ≤ γ∗(ωN )+

max
(x,(u,v,σ))∈ωN

{√
λu
max

λu
min

γ∗(ωN ) +

√
λv
max

λu
min

η∗(ωN )

δ(ε′)

}
d(ε),

(33)
with d(ε) =

√
2− 2δ(ε), λu

min and λu
max respectively the

minimal and maximal eigenvalue of P ∗
u (ωN )

Proof: Following Proposition 2.2, Equation (33) holds
if Equation (15) and Equation (24) both hold. Theorem 3.4
states that Equation (15) holds with probability β, and
Theorem 3.5 states that Equation (24) holds with probability
β′. Thus

PN [ωN ⊂ ∆ : (15) and (24) hold]

= 1− PN [ωN ⊂ ∆ : (15) or (24) does not hold]

≥ 1− PN [ωN ⊂ ∆ : (15) does not hold]

− PN [ωN ⊂ ∆ : (24) does not hold]
≥ 1− (1− β)− (1− β′)

=β + β′ − 1,

(34)

which concludes the proof.

IV. NUMERICAL EXPERIMENTS

Let us consider the CSLS S(G,Σ) introduced in Exam-
ple 2.1. Using the CJSR white-box approximation method
introduced in [16], we know that the true CJSR ρ(G,Σ) ≈
0.48741.

The simulations are the following: for different values of
N , we sample N observations as explained in Section III-
A. We then compute the optimal variables γ∗(ωN ) and
{P ∗

u (ωN ), u ∈ V } of the problem P(ωN ) defined in Equa-
tion (8). From these variables, we compute the lower and
upper bounds expressed in Proposition 3.1 and Corollary 3.1.
We provide the results for the example described above in
Figure IV for an increasing number N of sampled points i.e.
N ∈ [1, 50000].

We observe that the lower bound fastly converges to a
conservative value. We recall though that this lower bound
is deterministic. Concerning the upper bounds, we notice
that an upper bound becomes tighter for larger values N ,
the number of samples. We also observe that, as expected,
the cost of a tighter bound is a smaller confidence level.
Indeed, one can see on Figure IV that the bound is tighter
for small values of β + β′ − 1. We can finally observe
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Fig. 2. Lower and upper bounds derived in Proposition 3.1 and Corol-
lary 3.1 for an increasing number of samples N , with confidence levels
β + β′ − 1 ∈ {0.95, 0.98, 0.99}.

that one needs less samples to have stability guarantee
(according to Proposition 2.1), for smaller confidence levels.
One needs respectively 20000, 23000 and 26000 samples
to have stability guarantee for the considered CSLS with
confidence levels of respectively 95%, 98% and 99%.

V. CONCLUSION

In this work, we leveraged approaches such as scenario
optimization and sensitivity analysis to propose a method
providing probabilistic guarantees on the stability of an
unknown CSLS. We used the CJSR as a tool to approximate
the black-box stability of CSLS. In particular, we provided
a deterministic lower bound on the CJSR, as well as a
probabilistic upper bound on it. We showed that we obtain
tighter approximations of the CJSR for a large number of
samples, but also for smaller confidence levels. Finally, we
demonstrated that the theory holds by applying it to an
academic example.

Our work, and our findings, follow the previous work of
[9]–[11]. Compared with this previous body of work, we
believe that our contribution achieves an important step to-
wards practical applications, and in particular towards hybrid
automata and cyber-physical systems. In the future, we plan
to pursue further this direction, for instance by considering
more involved models of hybrid systems, and by refining our
bounds.
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