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Abstract

Hybrid systems are dynamical systems whose dynamics is characterized by continuous
and discrete behaviours. In particular, switching linear systems are an important family
of hybrid systems in which a switching rule plays a critical role. Consider a linear system
whose controller is physically separated from its plant, and where the feedback has to go
via a network. If the network fails, this linear system switches from an active to a failing
status.

Although this hybrid behaviour makes their range of application extensive, switching
linear systems are notoriously hard to analyze. However, they often generate rich data
(harvested from devices such as cameras, lidars, etc.), to which the engineer has access in
large quantities. This motivates a global research effort in developing data-driven tools
to analyze such complex systems.

Recently, data-driven stability analysis techniques were developed for a subcategory of
switching linear systems, where the switching rule is arbitrary. In this thesis, we take
a step towards complexity by generalizing these results to a more general framework,
where we consider that the switching rule is subject to logical rules. These systems are
called constrained switching linear systems.

We leverage existing data-driven approaches and combine them with specific tools for
analyzing the stability of these systems, such as lifting techniques and multiple Lyapunov
functions. Using these concepts, we first demonstrate that we can derive probabilistic
guarantees for the stability of constrained switching linear systems. We investigate two
different approaches, and compare them with multiple examples. Second, we provide
algorithmic tools to compute these guarantees.
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Introduction

Due to major technological upheavals, the complexity of many dynamical systems
has dramatically increased in recent years. As examples, think of systems such as
Smart Energy Grids, autonomous vehicles, Smart Cities, Networked Control Systems,
embedded robots, etc. The academic community has coined this paradigm shift under
the name of the Cyber-Physical revolution (see [Lee15, HJT12, KK12, Alu15, LS16]).
In particular, hybrid systems are dynamical systems whose dynamics are character-
ized by continuous and discrete behaviours. These systems often appear in promising
Cyber-Physical application, placing their analysis and control at the center of a global,
multidisciplinary and extensive research effort [CL08, Tab09, GST12]. The natural
complexity of hybrid systems prevents the engineer from using classical con-
trol and analysis techniques. Moreover, it has been proven that even in simple
settings, some natural control problems are undecidable, NP-hard or with no algebraic
solution [TB97, BT00a, BT00b]. In this thesis, we are interested in a particular type of
hybrid systems, namely switching systems.

Switching systems [Jun09, LM99, SG, JP11, Lib03] are dynamical systems in which a
switching rule plays a non-trivial role. A switching system is a two-level hybrid
system. The first level drives the dynamics of the system, and depends on a mode.
The second level, the coordinator, decides the rules of switching among the modes.
More precisely, switching linear systems have been of great interest from the research
community. Many tools have been developed to analyze their stability [Jun09, RG60,
AJPR14, DRI02, LD06, PJ08].

Many model-based analysis concepts and techniques, such as the joint spectral radius have
been applied to more general models, on which the switching signal is subject to
various constraints [Dai11, PJ14, PEDJ16]. We call these systems constrained switching
linear systems (CSLSs), in contrast to arbitrary switching linear systems (ASLSs), where
the switching rule is not constrained. As a lot of constrained switching systems do not
possess a common Lyapunov function, the notion of mutliple Lyapunov function has
been shown useful to analyze stability of such systems [YMH98, Bra98, LA09].
This notion will be central in this thesis. Networked Controlled Systems, for example,
can be modelled as constrained switching systems [DHvdWH11, JHK16]. An illustration
is provided in Figure 1.
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xt

xt+1
utNetwork

Packets are lost in pairs

IO System

xt+1 = Axt +But

Feedback controller

ut = Kxt

Measure

Figure 1: Modelling of a Networked Control System as a constrained switching linear
system. Suppose one wants to stabilize a system xt+1 = Axt+But. Assume A is instable.
We implement a linear state feedback ut = Kxt. However, the controller is physically
separated from the plant in this application, and the feedback has to be communicated
to the system via a network. Suppose that this network can fail. If the packet is correctly
sent, the system satisfies xt+1 = (A+BK)xt, otherwise it satisfies xt+1 = Axt. Moreover,
suppose that if a packet is lost, then the following packet is also lost, so that packets are
lost by group of 2. The latter is the switching rule. The IO system drives the dynamics,
it is the first level of the switching system. The network drives the switching rule, it it
the second level of the dynamical system.

In many practical applications, the engineer cannot rely on having a model,
but rather has to analyze the underlying system in a data-driven fashion. In
this case, researchers talk about black-box system, in opposition to model-based, white-
box systems. Most classical data-driven method (e.g. [KK17, HGGL98, CLS03]) are
limited to linear systems and rely on classical identification and frequency-domain
approaches. These methods may not be well suited for Cyber-Physical systems because
of the natural complexity of the latter. Novel data-driven stability analysis methods
[KBJT19, BJW21, RWJ21] have been recently develop based on scenario optimization
[CG16, CG18].

Our work, and our findings, follow the previous work of [KBJT19, BJW21, RWJ21].
Inspired by generalization to constrained switching linear systems such as [Dai11,
PJ14, PEDJ16], we will provide data-driven stability analysis techniques
in a more general framework, i.e. for constrained systems. More precisely, we
will answer the following question: from a finite set of observations, is one
able to derive mathematical probabilistic guarantees for the stability of
a constrained system?

A summary of the state of the art for stability analysis of switching linear systems, as
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well as the place of our contribution takes is provided in Table 1.

ASLS CSLS
White-box [Jun09, RG60, DRI02, LD06, PJ08] [Dai11, PJ14, PEDJ16]
Black-box [KBJT19, BJW21, RWJ21] [BWJ22a, BWJ22b]

Table 1: Non-exhaustive list of the state of the art for model-based and data-driven
stability analysis of switching linear systems. In this thesis, we answer the question
of the stability analysis of black-box CSLSs. Our contributions are the subject of two
publications [BWJ22a, BWJ22b].

Outline and contributions

Our work takes place in the context of the Cyber-Physical revolution. Our goals are
twofold. First of all, our contribution is theoretical. We show that it is possible to
generalize recently obtained data-driven results on ASLSs to a more general framework.
In this context, we develop two methods providing probabilistic stability certificates
for CSLSs. Our goal is also to provide practical tools for the engineer to analyze such
systems. We thus provide in addition to this document software tools to compute these
guarantees. These tools1 were implemented in the promising programming language
Julia [BKSE12]. The outline is presented in Figure 2. We detail it hereinafter.

Part I collects all necessary existing results about ASLSs and CSLSs. In Chapter 1,
main formal definitions and basic results about stability of switching linear systems are
provided. In particular, central concepts from Lyapunov theory are introduced, such as
common Lyapunov quadratic functions and multiple Lyapunov Functions (CQLFs and
MQLFs for short), respectively for stability analysis of ASLSs and CSLSs. In Chapter 2,
we present existing methods providing data-driven stability guarantees for ASLSs. After
formally stating the problem and the setting for ASLSs in Section 2.1, we present results
based on the scenario approach [KBJT19, BJW21] in Section 2.2. Then, another method
based on a sensitivity analysis approach [RWJ21] is presented in Section 2.3.

Our main theoretical findings are stated in Part II. We develop two methods to derive
probabilistic stability guarantees for CSLS:

• We propose a lifting approach in Chapter 3. As explained in Section 3.2, lifting
CSLSs to simpler ASLSs allows to reduce the computation of guarantees for CSLSs
to a simpler problem, for which data-driven results already exist. In this context,
we can use a powerful tool for stability analysis of ASLSs, namely common
Lyapunov functions, and more precisely CQLFs. We build our method on top
of existing results. More precisely, we generalize results based on the scenario
approach presented in Section 2.2. A general theorem is presented in Section 3.2.

• In Chapter 4, we propose another method which requires a slight change of setting.
We assume that harvested data provides more information than in the first case.

1Algorithmic tools are available at https://github.com/adrienbanse/DataDrivenCSLS.jl.
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From harvested data, can we learn probabilistic
guarantees for more general hybrid systems?

1: Basics

2.1: Scenario approach
[KBJT19, BJW21]

2.2: Sensitivity analysis
approach
[RWJ21]

3: Common Lyapunov
Functions
[BWJ22b]

4: Multiple Lyapunov
Functions
[BWJ22a]

5: Qualitative and quantitative analysis

6: An application
"Multi-zone building systems"
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Part III.
Comparaison and examples

Part II.
Probabilistic stability
guarantees for CSLSs

Part I.
Preliminaries

Figure 2: Thesis outline from bottom to top. The thesis is divided into three main parts.
Existing model-based results about ASLSs and CSLSs are stated in Part I, as well as
existing data-driven results for ASLSs. The main theoretical contributions can be found
in Part II, when methods for CSLSs are described. Part III contains qualitative and
quantitative comparaisons between methods, as well as a concrete example. A Julia
toolbox detailed in Appendix B is used to obtain Part III results.

However, since this method does not require to lift a CSLS to an ASLS, it is
not required for the considered CSLS to possess a common Lyapunov function
anymore. The latter observation thus makes this method less conservative. Indeed,
we leverage the sensitivity analysis approach introduced in Section 2.3 to multiple
Lyapunov functions. We first present the problem setting in Section 4.1. We
then show in Section 4.2 that, before any probabilistic guarantee on the stability of
a CSLS, our method can provide deterministic instability guarantees. In Section 4.3
and Section 4.4, we show that we can generalize results of [RWJ21] to CSLSs.
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Finally, Part III collects comparisons between both methods, as well as an applicative
example, namely multi-zone building systems [FLC16, CFM+19, BSH21]. In Chapter 5,
we provide qualitative and quantitative comparisons between the two methods. In
particular, we first provide a theoretical comparison in Section 5.1. Then, we verify
these assertions numerically in Section 5.2. We also show how to tune the parameters
of our technique and study their impact on bounds introduced in Part II. Finally, in
Chapter 6, we apply our methods to a specific multi-zone building system. We first
define the problem, and how it can be modeled with a CSLS in Section 6.1. We finally
provide a data-driven stability analysis of it in Section 6.2, using methods developed in
this thesis. Part III contains simulations. They all are performed with the Julia toolbox
implemented for this purpose. An overview of the code is available in Appendix B.
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Chapter 1

Basics

In this chapter, we introduce the concepts needed to tackle white-box stability analysis
of switching linear systems.

First, we give a definition of a switching linear system, as well as a definition of its stability.
Then, we formally define ASLSs, where the switching sequence is unconstrained. We
introduce the joint spectral radius (JSR for short), a quantity characterizing the stability
of ASLSs [RG60]. We explain how it is related to Lyapunov theory, and we present
a model-based method using common quadratic Lyapunov functions to approximate
the JSR of an ASLS [Jun09]. Finally, we define CSLSs, where concepts from automata
theory are needed [LM95]. In the same way as for ASLSs, we introduce the constrained
joint spectral radius (CJSR for short) [Dai11], and we present a model-based method
using multiple quadratic Lyapunov functions to approximate the CJSR of a given CSLS
[PEDJ16].

1.1 Switching linear systems
Discrete-time switching systems are hybrid systems whose dynamics is given by the
following equation:

xt+1 = fσ(t)(xt), (1.1)

where xt ∈ Rn is the state at time t ∈ N, σ(t) ∈ [m] is the mode at time t ∈ N and, for
any mode σ, fσ : Rn → Rn is some function deciding the dynamics of the systems. We
denote (σ(0), σ(1), . . . ) as the switching sequence.

In this thesis we are interested in switching linear systems, defined as follows.

Definition 1.1.1. A switching linear system is a switching system as defined in (1.1)
where, for all modes σ ∈ [m], fσ is a linear map i.e., fσ : Rn → Rn : x 7→ fσ(x) = Aσx,
with Aσ ∈ Rn×n.
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1.2. Arbitrary switching linear systems

The dynamics of a switching linear system thus takes the following form:

xt+1 = Aσ(t)xt. (1.2)

We denote by Σ = {Ai}i∈[m] the set of all matrices defining the system. Now suppose
that the structure of the system is such that, if σ(t) = 3, then σ(t + 1) is necessarily
equal to 3, and σ(t + 2) ∈ [m] \ {3}. It means that, if for some time t the system has
mode 3, then it has mode 3 exactly twice in a row. Such logical rules on the switching
sequence defines L ⊆ [m]N, the set of all admissible switching sequences. The set L
is further defined in the following sections. In this work, a switching linear system is
entirely defined by Σ and L.

All along this thesis, we are interested in the asymptotic stability of switching linear
systems. It is defined as follows:

Definition 1.1.2. A switching linear system defined by Σ and L is asymptotically stable
if, for all switching sequence (σ(0), σ(1), . . . ) ∈ L, and for all x0 ∈ Rn,

lim
t→∞

Aσ(t) . . . Aσ(0)x0 = 0. (1.3)

For the sake of simplicity, from now, we refer to asymptotic stability as stability. Ex-
ample 1.1.1 and Figure 1.1 highlight the fact that a switching linear system defined
by Σ ⊂ Rn×n and some logical rules L ⊆ [m]N can be instable, even if each one of the
underlying linear systems is stable. The latter observation makes us think that we need
more advanced concepts in order to characterize the stability of switching linear systems.

Example 1.1.1 ([Jun09, Figure 1.1 and Figure 1.2]). Let Σ = {A0, A1} with

A0 = 2
3

(
cos(1.5) sin(1.5)
−2 sin(1.5) 2 cos(1.5)

)
and A1 = 2

3

(
2 cos(1.5) 2 sin(1.5)
− sin(1.5) cos(1.5)

)
. (1.4)

Consider the linear systems S0 defined by xt+1 = A0xt and S1 defined by xt+1 = A1xt.
Both are stable. Consider the switching linear system defined by Σ and L, where

L = {(2), (2, 1), (2, 1, 2), (2, 1, 2, 1) . . . }, (1.5)

i.e. the set of switching sequences starting with σ(0) = 2 and where, for each t > 0,
σ(t) = 1 implies σ(t+ 1) = 2 and σ(t) = 2 implies σ(t+ 1) = 1. This switching linear
system seems to be instable as we can see on Figure 1.1(b) although S0 and S1 are both
stable as we can see on Figure 1.1(a).

1.2 Arbitrary switching linear systems
Suppose that there is no logical rule on the switching sequence of a switching linear
system, then we speak about arbitrary switching linear systems.
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1.2. Arbitrary switching linear systems
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(a) S0 (in black) and S1 (in red). Both dynamical
systems are stable.
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(b) The switching linear system defined by Σ =
{A0, A1} and L = {(2), (2, 1), (2, 1, 2), . . . }. This
dynamical system is instable.

Figure 1.1: Illustration of the stability property for switching linear systems.

1.2.1 Definition and joint spectral radius

Definition 1.2.1. An arbitrary switching linear system (ASLS for short) is a switching
linear system as defined in Definition 1.1.2 whose switching sequences (σ(0), σ(1), . . . ) ∈ L,
with L = [m]N.

We naturally denote by S(Σ) the ASLS defined by the set of matrices Σ.

The joint spectral radius of a set of matrices Σ, introduced in [RG60] is defined as follows:

Definition 1.2.2. Given a set of matrices Σ = {Ai}i∈[m], the joint spectral radius (JSR
for short) ρ(Σ) is defined as

ρ(Σ) := lim
t→∞

max
{
‖Aσ(t−1) . . . Aσ(0)‖1/t : (σ(0), . . . , σ(t− 1)) ∈ [m]t

}
. (1.6)

As shown in Proposition 1.2.1, the JSR of Σ entirely characterizes the stability of the
ASLS S(Σ):

Proposition 1.2.1 ([Jun09, Corollary 1.1]). Given a set of matrices Σ, the ASLS S(Σ)
is stable if and only if ρ(Σ) < 1.

1.2.2 JSR Approximation with common Lyapunov functions

We can now focus on the approximation of the JSR with common Lyapunov functions.
First we present an alternative definition of the JSR:

Proposition 1.2.2 ([Jun09, Proposition 2.6]). For any bounded set Σ such that ρ(Σ) 6= 0,
the JSR can be defined as

ρ(Σ) = inf
‖·‖

max{‖A‖ : A ∈ Σ}. (1.7)
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1.2. Arbitrary switching linear systems

Proposition 1.2.2 implies that, for any norm ‖ · ‖, ρ(Σ) ≤ max{‖A‖ : A ∈ Σ}. Hence, in
order to find an upper bound on the JSR, one can consider a large enough set of norms.
Then, for each considered norm ‖ · ‖, compute max{‖A‖ : A ∈ Σ}, and take the tightest.

We now explain why the latter assertion is linked to Lyapunov theory. We recall that a
Lyapunov function is a function V : Rn → R satisfying the following conditions [Jun09]:

1. V (xt) tends to 0 as t tends to infinity,

2. and V (xt)→ 0 implies xt → 0,

with xt the state of some discrete-time dynamical system. According to Lyapunov
theory, in our context, existence of a Lyapunov function is a necessary and sufficient
condition for the stability of the system. If there is a norm ‖ · ‖ such that ‖A‖ < 1 for
all A ∈ Σ, then ‖ · ‖ is a Lyapunov function. Indeed, if ‖A‖ < 1 for all A ∈ Σ, then
max{‖A‖ : A ∈ Σ} < 1, and, for any initial state x0 ∈ Rn,

lim
t→∞
‖xt‖ = lim

t→∞
‖Aσ(t−1) . . . Aσx0‖

≤ lim
t→∞
‖Aσ(t−1)‖ . . . ‖Aσ‖‖x0‖

≤ lim
t→∞

(max{‖A‖ : A ∈ Σ})t ‖x0‖

= 0,

(1.8)

which is condition 1. Moreover, by continuity of linear maps, and since ‖xt‖ = 0 implies
xt = 0 by definition of a norm, condition 2 holds.

Summarizing, if one wants to approximate the JSR, one can apply the methodology
explained above. If a norm is found with max{‖A‖ : A ∈ Σ} < 1, then ρ(Σ) < 1 according
to Proposition 1.2.2, and the system is stable according to both Proposition 1.2.1 and
Lyapunov theory.

We now introduce ellipsoidal norms:

Definition 1.2.3 ([Jun09, Definition 2.8]). Let P ∈ Sn, the vector ellipsoidal norm is
defined as

‖ · ‖P : Rn → R : x 7→ ‖x‖P =
√
xTPx, (1.9)

and, for any A ∈ Rn×n, the induced matrix norm

‖A‖P = max
‖x‖P =1

‖Ax‖P (1.10)

is the matrix ellipsoidal norm.

Note that, when it is clear from the context, we drop the words vector or matrix to
respectively refer to vector and matrix ellipsoidal norms. In the search for a norm as
explained above, we first propose to restrict ourselves to this particular familiy of norms.
If there is P ∈ Sn such that max{‖A‖P : A ∈ Σ} < 1, we say that ‖ · ‖P is a common
quadratic Lyapunov function (or CQLF for short) for the ASLS S(Σ). The following
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proposition shows that searching for P can be done by solving linear matrix inequalities
(LMI s):

Proposition 1.2.3 ([Jun09, Proposition 2.8]). For any set of matrices Σ, if there is
γ > 0 and P ∈ Sn satisfying the following set of LMIs:

∀A ∈ Σ : ATPA � γ2P, (1.11)

then ρ(Σ) ≤ γ.

Indeed, finding P ∈ Sn such that LMIs (1.11) hold and finding P ∈ Sn such that
‖A‖P ≤ γ for all A ∈ Σ are equivalent [Jun09].

The tightest value of γ in LMIs (1.11) belongs to the interval [ρ(Σ), n1/2ρ(Σ)] [AS98,
BNT05]. In addition, [BNT05] provides another bound γ ∈ [ρ(Σ),m1/2ρ(Σ)]. Hence
Theorem 1.2.4 holds.

Theorem 1.2.4 ([Jun09, Theorem 2.11]). Consider a set of matrices Σ. Let γ∗ be the
smallest value of γ such that there is P ∈ Sn such that, for all A ∈ Σ, LMIs ATPA � γ2P
hold. Then

max
{
m−1/2, n−1/2

}
γ∗ ≤ ρ(Σ) ≤ γ∗. (1.12)

In summary, in order to approximate the JSR of a given ASLS S(Σ), we will
try to find the minimal γ such that LMIs (1.11) hold for the set Σ, and apply
Theorem 1.2.4 and Proposition 1.2.1 to find a sufficient condition on stability or
instability of the considered ASLS.

1.3 Constrained switching linear systems
A constrained switching linear system is a switching linear system whose switching
sequences are constrained by logical rules, implying L ⊂ [m]N. We model these rules by
an automaton. Therefore, we need first to present some results from automata theory.
Then, we will formally define a constrained switching linear system, and we will present a
model-based method to approximate the constrained joint spectral radius of the latter, a
generalization of the JSR.

1.3.1 Automata and languages

First, we define some concepts from automata theory. We give the definition of a labelled
graph:

Definition 1.3.1. A labelled graph consists of a finite set V of vertices together with a
finite set E ⊆ V × V × S of edges, where S is a finite set of labels. It is noted G(V,E).
Any edge (u, v, σ) ∈ E starts at vertex u, terminates at vertex v and carries the label σ.
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1.3. Constrained switching linear systems

Without using the same notations, this definition is inspired from [LM95, Definition
2.2.1] and [LM95, Definition 3.1.1]. Without any loss of generality, from now, we assume
that the set of labels S = [m], where m is the number of labels. Now we define the notion
of irreducibility:

Definition 1.3.2 ([LM95, Definition 2.2.13]). A labelled graph is irreducible if, for each
ordered pair of vertices u and v, there is a path starting at u and terminating at v.

In the latter, a path is defined as a sequence of edges. We now have defined every notion
necessary to define an automaton:

Definition 1.3.3. An automaton is an irreducible labelled graph. It is noted G(V,E).

Example 1.3.1. Consider the automaton G(V,E) depicted in Figure 1.2. It is defined
by V = {a, b}, A = [m] with m = 2, and

E = {(a, b, 1), (b, a, 1), (a, a, 2), (b, b, 2)}. (1.13)

One can verify that a path exists from a to b e.g., ((a, b, 1)) or ((a, a, 2), (a, b, 1)), and
that a path exists from b to a e.g., ((b, a, 1)) or ((b, b, 2), (b, a, 1)).

a b

1

1

2 2

Figure 1.2: Example of an automaton.

A word of length l ∈ N accepted by an automaton G is a sequence of labels (σ(0), . . . , σ(l−
1)) such that there exists a path ((ui, vi, σ(i)))i=0,...,l−1 in G. The language of G restricted
to length l, noted LG,l, is the set of all words of length l accepted by G. Finally, the
language of G, noted LG is the set of all words accepted by G, i.e. LG = ∪l∈NLG,l.

All along this work, we will use the notion of entropy of an automaton. We give its
definition:

Definition 1.3.4 ([LM95, Definition 4.1.1]). Let G be an automaton. Its entropy, noted
h(G), is defined as

h(G) = lim
l→∞

log2 |LG,l|
l

. (1.14)

The entropy h(G) is the growth rate of |LG,l|, the cardinality of its language restricted
to length l.
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1.3. Constrained switching linear systems

1.3.2 Definition and constrained joint spectral radius

We are now able to define a constrained switching linear system:

Definition 1.3.5. A constrained switching linear system (CSLS for short) is a switching
linear system as defined in Definition 1.1.2 whose switching sequences (σ(0), σ(1), . . . ) ∈ L
with L = LG for some automaton G.

We denote by S(G,Σ) the CSLS defined by the set of matrices Σ and whose switching
sequences belong to the language accepted by the automaton G.

This definition allows to model constraints on the switching sequence. We give an example
of a CSLS, inspired from [PEDJ16, Section 4]:

Example 1.3.2. Consider a plant that may experience control failures. Its dynamics is
given by xt+1 = Aσ(t)xt where Aσ(t) = A+BKσ(t), with

A =
(

0.47 0.28
0.07 0.23

)
and B =

(
0
1

)
. (1.15)

Kσ(t) is defined as follows. K1 =
(
k1 k2

)
, with k1 = −0.245 and k2 = 0.135, corresponds

to the mode where the controller works as expected. K2 =
(
0 k2

)
and K3 =

(
k1 0

)
respectively correspond to the modes when the first and the second part of controller
fails. And K4 =

(
0 0

)
corresponds to the mode when both parts fail. We consider as a

contraint that the same part of the controller never fails twice in a row. This is modelled
by the automaton G, depicted in Figure 1.3.

a

b

c d

32

1
2

1
3

4

1

1

Figure 1.3: Automaton G for Example 1.3.2. No mode can fail twice in a row.

The constrained joint spectral radius of an automaton G and a set of matrices Σ,
introduced in [Dai11] is defined as follows:

Definition 1.3.6. Given an automaton G and a set of matrices Σ = {Ai}i∈[m], the
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1.3. Constrained switching linear systems

constrained joint spectral radius (CJSR for short) ρ(G,Σ) is defined as

ρ(G,Σ) := lim
t→∞

max
{
‖Aσ(t−1) . . . Aσ(0)‖1/t : (σ(0), . . . , σ(t− 1)) ∈ LG,t

}
. (1.16)

In the same way as for ASLSs, as showed in Proposition 1.3.1, the CJSR ρ(G,Σ) entirely
characterizes the stability of the CSLS S(G,Σ):

Proposition 1.3.1 ([Dai11, Corollary 2.8]). Given an automaton G and a set of matrices
Σ, the CSLS S(G,Σ) is stable if and only if ρ(G,Σ) < 1.

Remark 1.3.1. An ASLS defined by m matrices is a CSLS where the automaton G
only has one node and m loops, as illustrated in Figure 1.4. We call these automata are
called flowers of order m.

a

1

2

4

m

3
. . .

Figure 1.4: Flower of order m. If G is a flower of order m, the CSLS S(G,Σ) is equivalent
to the ASLS S(Σ), with |Σ| = m.

1.3.3 CJSR approximation with multiple Lyapunov functions

As explained in Section 1.2.2, for any stable ASLS, there exists a common norm ‖ · ‖
such that ‖A‖ < 1 for all A ∈ Σ. It is however not the case for CSLSs, as shown by the
following example:

Example 1.3.3 ([PEDJ16, Example 1]). Consider the one-dimensional CSLS S(G,Σ)
with G as depicted in Figure 1.5, and Σ = {A1, A2} = {2, 1/8}. Then there is no common
norm such that 2 = ‖A1‖ < 1. However, given that

ρ(G,Σ) = lim
t→∞
‖(A1A2)t‖1/(2t) =

√
A1A2 = 1/2 < 1, (1.17)

the CSLS S(G,Σ) is stable.

To circumvent this, the notion of multinorms in the context of CSLSs was introduced
(see e.g. [PEDJ16]):

Definition 1.3.7 ([PEDJ16, Definition 1]). A set of multinorms for a CSLS S(G(V,E),Σ)
is a set of |V | norms {‖ · ‖u, u ∈ V }.
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1.3. Constrained switching linear systems

a b

1

2

Figure 1.5: Automaton G for Example 1.3.3. The CSLS defined by G and Σ = {2, 1/8}
is stable but there is no norm such that ‖A‖ < 1 for all A ∈ Σ.

Similarly as for ASLSs, we then give a new definition for the CJSR:

Definition 1.3.8 ([PEDJ16, Proposition 2.2]). Consider an automaton G(V,E) and a
set of matrices Σ. Then the CJSR can be defined as:

ρ(G,Σ) = inf
{‖·‖u, u∈V }

max
{‖Aσx‖v
‖x‖u

: x ∈ Rn, (u, v, σ) ∈ E
}
. (1.18)

We now do a similar analysis as for ASLSs. Proposition 1.3.8 implies that, for any set of
multinorms {‖ · ‖u, u ∈ V },

ρ(G,Σ) ≤ max
{‖Aσx‖v
‖x‖u

: x ∈ Rn, (u, v, σ) ∈ E
}
. (1.19)

If there is a set of multinorms {‖ · ‖u, u ∈ V } such that ‖Aσx‖v/‖x‖u < 1 for all
x ∈ Rn and for all (u, v, σ) ∈ E, then the set {‖ · ‖u, u ∈ V } is a set of multiple
Lyapunov functions, and the CSLS S(G,Σ) is stable. One can thus apply a very similar
methodology as for ASLSs, but with family of multinorms. If a set of multinorms is
found with max {‖Aσx‖v/‖x‖u : x ∈ Rn, (u, v, σ) ∈ E} < 1, then ρ(G,Σ) < 1 according
to Proposition 1.3.8, and the system is stable according to both Proposition 1.3.1 and
Lyapunov theory.

Now, considering a CSLS S(G,Σ), we can restrict our search to multiple ellipsoidal norms
(see Definition 1.2.3). It means, for all sets {Pu ∈ Sn, u ∈ V }, take the set for which
max {‖Aσx‖Pv/‖x‖Pu : x ∈ Rn, (u, v, σ) ∈ E} is the smallest. If this quantity is strictly
smaller than 1, then {‖ · ‖Pu , u ∈ V } is a set of multiple quadratic Lyapunov functions
(MQLFs for short). As for ASLSs, the following proposition shows that searching for
{Pu ∈ Sn, u ∈ V } can be done by solving LMIs:

Proposition 1.3.2. For any automaton G and set of matrices Σ, if there is γ > 0 and
{Pu ∈ Sn, u ∈ V } satisfying the following set of LMIs:

∀(u, v, σ) ∈ E : ATσPvAσ � γ2Pu, (1.20)

then ρ(G,Σ) ≤ γ.

Indeed one can see that the same equivalence as for the abritrary case holds (see
Proposition 1.2.3).
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1.3. Constrained switching linear systems

We can generalize a part of Theorem 1.2.4 for the constrained case:

Theorem 1.3.3 ([PEDJ16, Theorem 3.1]). Consider a set of matrices Σ and an automa-
ton G(V,E). Let γ∗ be the smallest value of γ such that there is a set {Pu ∈ Sn, u ∈ V }
such that, for all (u, v, σ) ∈ E, LMIs ATσPvAσ � γ2Pu hold. Then

n−1/2γ∗ ≤ ρ(G,Σ) ≤ γ∗. (1.21)

Finally, a more recent result presented in [LPJ19] states that the entropy (see Defini-
ton 1.3.4) of the underlying automaton plays a role in the approximation of the CJSR:

Theorem 1.3.4 ([LPJ19, Theorem 2]). Consider a set of matrices Σ and an automaton
G(V,E). Let γ∗ be the smallest value of γ such that there is a set {Pu ∈ Sn, u ∈ V }
such that, for all (u, v, σ) ∈ E, LMIs ATσPvAσ � γ2Pu hold. Then

2−h(G)/2γ∗ ≤ ρ(G,Σ) (1.22)

Corollary 1.3.1 thus holds.

Corollary 1.3.1 ([LPJ19, Corollary 1]). Consider a set of matrices Σ and an automaton
G(V,E). Let γ∗ be the smallest value of γ such that there is a set {Pu ∈ Sn, u ∈ V }
such that, for all (u, v, σ) ∈ E, LMIs ATσPvAσ � γ2Pu hold. Then

max{2−h(G)/2, n−1/2}γ∗ ≤ ρ(G,Σ) ≤ γ∗ (1.23)

In summary, in order to approximate the CJSR of a given CSLS S(G(V,E),Σ),
we will try to find the minimal γ such that LMIs (1.20) hold for the set of edges
E, and apply Corollary 1.3.1 and Proposition 1.3.1 to find a sufficient condition
on stability or instability of the considered CSLS.
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Chapter 2

Existing approaches for
data-driven ASLSs

In this chapter, we present existing approaches for approximating the JSR of an ASLS
in a data-driven fashion. It means, for an ASLS S(Σ), finding minimal γ such that
LMIs (1.11) hold is not possible since Σ is not known. Some works have shown that it
is possible to use different approaches to approximate the solution with a certain level
of confidence. First, [BJW21] uses results from scenario approach (see [CG18] for an
introduction) to approximate the tightest γ. Then, [RWJ21] tries a different approach
by applying a sensitivity analysis. In Part II, we will draw on these two approaches to
learn stability guarantees for black-box CSLSs by approximating their CJSR.

2.1 Problem statement
Consider an ASLS S(Σ), where Σ = {A1, . . . , Am} ⊆ Rn×n, where m is the number
of matrices. For a fixed length l ≥ 1, consider the set Σl := {A = Aσ(l−1) . . . Aσ(0) :
(σ(0), . . . , σ(l − 1)) ∈ [m]l}. From the definition of the JSR (see Definition 1.2.2), it is
straighforward that ρ(Σl) = ρ(Σ)l [Jun09, Proposition 2.5]. Now, let ∆ = Σl × S, and P
be the uniform distribution on ∆. We seek to solve the following program:

P(∆) : min
P∈Rn×n

γ>0

γ (2.1a)

s.t. P ∈ Sn, (2.1b)
∀(A, x) ∈ ∆, (Ax)TP (Ax) ≤ γ2lxTPx. (2.1c)

Remark 2.1.1. Note that, following the definition of ∆ = Σl × S, we restrict x to the
unit sphere S in constraint (2.1c). We can do this thanks to homogeneity of ASLS: for
any x ∈ Rn, µ > 0, and A ∈ Σ, it holds that A(µx) = µAx.
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We denote by γ∗(∆) and P ∗(∆) the solutions of program P(∆). From Theorem 1.2.4, it
yields ρ(Σl) ≤ γ∗(∆)l, and thus ρ(Σ) ≤ γ∗(∆). In a data-driven fashion, for any fixed
length l, Σ is not known, hence ∆ neither. We introduce the set of N observations as

ωN := {(Ai, xi), i = 1, . . . , N} ⊂ ∆. (2.2)
It means, we have access to N l-steps trajectories of the considered ASLS. Now, we can
introduce P(ωN ), the data-driven version of program P(∆):

P(ωN ) : min
P∈Rn×n

γ>0

(γ, ‖P‖F ) (2.3a)

s.t. P ∈ X := Sn ∩ {M ∈ Rn×n : I �M � CI}, (2.3b)
∀(A, x) ∈ ωN , (Ax)TP (Ax) ≤ γ2lxTPx, (2.3c)

for a large C ≥ n. We denote by γ∗(ωN ) and P ∗(ωN ) the solutions of program P(ωN ).

There are multiple differences between programs P(∆) and P(ωN ). The main difference
is that there is an infinite number of LMIs 2.1c in P(∆), while there are N of them
in P(ωN ) (see constraint (2.3c)). Also, a tie-breaking rule1 is defined in P(ωN ). This
tie-breaking rule allows for improving the probabilistic approximation that is presented
in [BJW21] (see [KBJT19] for details). Finally, the feasible set for P is restricted from
Sn in constraint (2.1b) to Sn ∩ {M ∈ Rn×n : I �M � CI} in constraint (2.3b). This is
done to ensure its compacity, guaranteeing the existence of a solution.

For a given set of observations ωN , the problem tackled for ASLSs in [BJW21]
and [RWJ21] is the inference of an upper bound on ρ(G,Σ) (denoted here by
γ∗(∆) ∈ R) from γ∗(ωN ) ∈ R and the matrix P ∗(ωN ) ∈ Rn×n, the solution
of the sampled optimization problem (2.3).

2.2 The scenario approach
In this subsection, we present the solution introduced in [KBJT19, BJW21]. This
method is based on the scenario approach, a technique which allows to obtain solutions
for optimization problems with only a sample of constraints [CG16, CG18, Cal10]. We
first introduce some notions related with the problem tackled in this section.

Definition 2.2.1. Let X be a compact subset of Rd, with non-empty interior and such
that 0 /∈ X . Let ω be a set, and {aδ}δ∈ω, {bδ}δ∈ω be two collections of vectors in Rd such
that bTδ x > 0 for all x ∈ X and δ ∈ ω. A quasi-linear optimization problem has the form

min
x∈Rd, λ≥0

(λ, c(x)) s.t. x ∈ X , (2.4a)

∀δ ∈ ω, aTδ x ≤ λbTδ x, (2.4b)
1We note min(f(x), g(x)) the multiobjective optimization problem where g(x) is used as a tie-breaking

rule. That is, the objective is to minimize the function f(x), and, in case there are several optimizers, the
solution is the one which minimizes g(x).
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where c : X → R is a strongly convex function.

We now define the notion of Barabanov matrix:

Definition 2.2.2 ([BJW21, Definition 7]). A matrix A ∈ Rn×n is said to be Barabanov
if there exists a symmetric matrix P � 0 and γ ≥ 0 such that ATPA = γ2P .

We will also need two classical functions, which are known as incomplete regularized beta
function and inverse incomplete regularized beta function.

Definition 2.2.3 ([Cro11, Equation (6.6.1)]). The incomplete beta function is defined
as:

B : R++ × R++ × R++ → R+ : (x; a, b) 7→ B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt. (2.5)

Definition 2.2.4 ([Cro11, Equation (6.6.2)]). The incomplete regularized beta function
is defined as:

I : R++ × R++ × R++ → R+ : (x; a, b) 7→ I(x; a, b) = B(x; a, b)
B(1; a, b) . (2.6)

Definition 2.2.5 ([MB73]). The inverse incomplete regularized beta function is denoted
by I−1(y; a, b), and is the function whose output is x such that I(x; a, b) = y.

Finally, we define the notion of spherical cap:

Definition 2.2.6 ([Li11]). The spherical cap on S of direction c and measure ε is defined
as C(c, ε) := {x ∈ S : cTx > ‖c‖δ(ε)}, where δ(ε) is defined as

δ(ε) =
√

1− I−1(2ε; (n− 1)/2, 1/2). (2.7)

An illustration of Definition 2.2.6 is given in Figure 2.1 for n = 2. A plot of the function
δ(ε) for different system dimensions is also given in Figure 2.2.

Authors of [BJW21] note that the data-driven program (2.3), P(ωN ) is a quasi-linear
program. They show that the scenario approach chance-constrained result [Cal10,
Theorem 3.3] for convex optimization problems holds for quasi-linear problems (see
[BJW21, Theorem 6]). It yields Theorem 2.2.1.

Theorem 2.2.1 ([BJW21, Corollary 12]). Consider a set of m matrices Σ ⊂ Rn×n,
a set of N observations ωN ∈ ∆N , where, for a fixed length l, ∆ = Σl × S with
N ≥ d := n(n + 1)/2. Suppose that Σl contains no Barabanov matrices. Consider
program (2.3), P(ωN ) with solutions γ∗(ωN ) and P ∗(ωN ). Then, for a given level of
confidence β ∈ (0, 1), with probability at least β,

ρ(Σ) ≤ γ∗(ωN )

δ
(
ε(β,N)κ̃(P ∗(ωN ))

2(1/ml)

)1/l (2.8)
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ε

δ(ε)

C(c, ε)
c

Figure 2.1: Illustration of the quantitiy δ(ε)
for a given ε, and the spherical cap C(c, ε)
for n = 2 and an arbitrary vector c ∈ R2.
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Figure 2.2: The function δ(ε) as defined in
Equation 2.7 for all possible values of ε and
for dimensions n ∈ {2, . . . , 10}.

where κ̃(A) =
√

det(A)/λmin(A)n for any A ∈ Rn×n, and

ε(β,N) = I−1(1− β; d,N − d+ 1). (2.9)

Theorem 2.2.1 thus provides a first method to derive probabilistic guarantee
on the stability of a given ASLS.

Remark 2.2.1. In this thesis, we will not focus on the proof of Theorem 2.2.1, which is
based on the notion of quasi-linear optimization problems and [KBJT19]. However, it is
important to note that the sampling is uniform in the setting for ASLS (see Section 2.1).
The factor 1/ml in Equation (2.8) is the minimal probability to draw any matrix in
Σl, i.e. 1/|Σl|. Moreover, as it is explained in [KBJT19, Remark 16], it is equivalent
to find a lower bound on the set of points that satisfy the constraints, and to take the
complement of the latter. As a consequence, an equivalent bound as the one stated in
Equation (2.8) is

ρ(Σ) ≤ γ∗(ωN )

δ
(

1−(1−ε(β,N)ml)κ̃′(P ∗(ωN ))
2

)1/l , (2.10)

with κ̃′(A) =
√

det(A)/λmax(A)n. This alternative bound can be used when the bound (2.8)
is infinite or weaker. This time, it is important to note that the factor ml in Equa-
tion (3.14) is the inverse of the maximal probability to draw any matrix in Σl. This is
the same probability thanks to uniformity in the setting of [BJW21].

15



2.3. The sensitivity analysis approach

2.3 The sensitivity analysis approach
We now present the solution to the problem stated in Section 2.1 proposed in [RWJ21],
based on a sensitivity analysis. First we present a key result:

Lemma 2.3.1 ([RWJ21, Lemma 1]). Consider the program (2.1), P(∆) for the ASLS
S(Σ) with optimal cost γ∗(∆). There exists a set ω ⊂ ∆ with |ω| = n(n+ 1)/2 + 1 such
that γ∗(ω) = γ∗(∆), where γ∗(ω) is the solution of the program (2.3), P(ω).

Lemma 2.3.1 provides a result on the cardinality of the set of support constraints of the
problem. Support constraints are constraints needed for the sampled problem P(ωN ) to
have the same solution as the full problem P(∆). As it will be explained in Remark 4.3.1,
Lemma 2.3.1 can be improved.

Now, for a given number of observations N , Proposition 2.3.2 gives a bound on the
conservativism of the sampled problem (2.3), P(ωN ), with respect to the white-box
problem (2.1), P(∆). It is a consequence of Lemma 2.3.1.

Proposition 2.3.2 ([RWJ21, Proposition 2]). Consider the program (2.1), P(∆) for the
ASLS S(Σ) with optimal cost γ∗(∆). Let ωN = {(Ai, xi), i = 1, . . . , N} ⊂ ∆ be a set of
N samples. Suppose N ≥ n(n+ 1)/2 + 1. Then, for all ε ∈ (0, 1], with probability at least

β(ε,m,N) = 1−
(
n(n+ 1)

2 + 1
)(

1− ε

ml

)N
, (2.11)

there exists a set ω′N := {(Ai, x
′
i), i = 1, . . . , N} ⊂ ∆ such that γ∗(ω′N ) = γ∗(∆) with

‖xi − x′i‖ ≤
√

2− 2δ(ε), where γ∗(ω′N ) is the solution of program (2.3), P(ω′N ).

Finally, Proposition 2.3.2 allows to derive Theorem 2.3.3.

Theorem 2.3.3 ([RWJ21, Proposition 3]). Consider a set of m matrices Σ ⊂ Rn×n,
a set of N observations ωN ∈ ∆N , where, for a fixed length l, ∆ = Σl × S with
N ≥ d := n(n + 1)/2 + 1. Consider program (2.3), P(ωN ) with solutions γ∗(ωN ) and
P ∗(ωN ). Then, for a given level of confidence β ∈ (0, 1], let

ε = ml

(
1− N

√
2(1− β)

n(n+ 1) + 2

)
. (2.12)

Then, with probability at least β,

ρ(Σ) ≤
(
γ∗(ωN )l +

[
γ∗(ωN )l +A(Σl)

]
d(ε)κ(P ∗(ωN ))

)1/l
, (2.13)

where d(ε) =
√

2− 2δ(ε), and A(Σl) = maxA∈Σl ‖A‖.

With the same setting as for the first method based on scenario approach, The-
orem 2.3.3 based on sensitivity analysis provides an alternative method to
derive probabilistic guarantees on the stability of an ASLS.
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Remark 2.3.1. The white-box quantity A(Σl) = maxA∈Σl ‖A‖ is not known since Σ is
not known. Based on chance-constrained results and scenario approach, [RWJ21] gives a
closed form for it (see [RWJ21, Equation (15) and Theorem 1]), but we do not present it
in this thesis. We will provide our own closed form for CSLS in the next chapters (see
Section 4.4).
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Part II

Probabilistic stability guarantees
for CSLSs

19



Chapter 3

Common Lyapunov functions

In this chapter, we present a first method to solve data-driven stability guarantees
learning for CSLSs.

By generalizing results based on the scenario approach for ASLSs (see Section 2.2,
[BJW21]), we will show that we are able to construct an approximate common
Lyapunov function for the considered CSLS, from sampled data. We will also show
that, under some assumptions, a smaller entropy of the underlying automaton allows for
a better probabilistic guarantee.

This chapter is based on [BWJ22b] and is organized as follows. In Section 3.1, we formally
present the problem. In Section 3.2 we propose a lifting result allowing us to reduce the
computation of the CJSR to the JSR of a certain set of matrices. We are then able to
extend data-driven results from [BJW21] to CSLS. Then, in Section 3.3, we investigate
further the obtained generalization. Finally, in Section 3.4, we conclude about the derived
method.

3.1 Problem statement
Consider a CSLS S(G,Σ), where Σ = {A1, . . . , Am} ⊆ Rn×n, where m is the number of
matrices, and where G(V,E) is some automaton constraining the switching sequence as
explained in Section 1.3. For a fixed length l ≥ 1, consider the set of possible products

Πl = {Aσ(l−1) . . . Aσ(0) : (σ(0), . . . , σ(l − 1)) is a word accepted by G}. (3.1)
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We generalize the white-box problem (2.1) to l-steps CSLSs. Let ∆ = Πl × S. We seek
to solve the following program:

P(∆) : min
P∈Rn×n

γ>0

γ (3.2a)

s.t. P ∈ Sn, (3.2b)
∀(A, x) ∈ ∆, (Ax)TP (Ax) ≤ γ2lxTPx. (3.2c)

Note that program (3.2) is the same as program (2.1)1, except that, following the
definition of Πl given in Equation (3.1), ∆ = Πl × S is now constrained with G for
l > 1. We denote by γ∗(∆) and P ∗(∆) the solutions of program P(∆). We will show in
Section 3.2 that, if γ∗(∆) < 1, ‖ · ‖P ∗(∆) is a common Lyapunov function for the CSLS.

In a data-driven fashion, for any fixed length l, Σ and G(V,E) are not known, hence ∆
neither. We introduce the set of N observations as

ωN := {(Ai, xi), i = 1, . . . , N} ⊂ ∆. (3.3)

It means, we have access to N l-steps observations. We assume that observations are
sampled in the following way. xi is drawn randomly, uniformly and independently from
S. And, for each sample i ∈ [N ], the l matrices are generated from the automaton
G(V,E) in the following way. An initial state u0 is drawn randomly and uniformly
from V . Then a random walk of length l is performed on G, where, from uj ∈ V , the
next state uj+1 is drawn randomly, uniformly and independently from the set of its
out-neighbours {uj+1 ∈ V : (uj , uj+1, σi(j) ∈ E} where σi(j) is the label corresponding
to the edge linking uj and uj+1. The sequence of nodes (u0, . . . , uj , uj+1, . . . , ul) form a
switching sequence σi(0), . . . , σi(l − 1), which maps to the matrices Aσi(0), . . . , Aσi(l−1).
It yields Ai = Aσi(0) . . . Aσi(l−1). An illustration of this sampling strategy is provided in
Figure 3.1.

Now, we can introduce P(ωN ), the data-driven version of program P(∆):

P(ωN ) : min
P∈Rn×n

γ>0

(γ, ‖P‖F ) (3.4a)

s.t. P ∈ X := Sn ∩ {M ∈ Rn×n : I �M � CI}, (3.4b)
∀(A, x) ∈ ωN , (Ax)TP (Ax) ≤ γ2lxTPx, (3.4c)

for a large C ≥ n. We denote by γ∗(ωN ) and P ∗(ωN ) the solutions of program P(ωN ).
Again, program (3.4) is the same as program (2.3), except that ωN is now constrained
with G.

For a given set of observations ωN , the problem tackled for CSLSs is the inference of
γ∗(∆) from γ∗(ωN ) and P ∗(ωN ). According to Proposition 1.3.3, we will show that γ∗(∆)
is an upper bound on ρ(G,Σ).

1For example, homogeneity, as defined in Remark 2.1.1, holds for CSLS.
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∆ = Πl × Rn

(A1, x1)

(A2, x2)

(AN , xN )

ωN = {(A1, x1), (A2, x2), . . . , (AN , xN )}

. . .

P

(l = 2)

x1

y1 = A2A1x1

x2

Mathematical setting "Real world" setting

y2 = A5A3x2
xN

yN = A3A4xN

1

2
3

5
4

3

S
(observed)

G
(not observed)

Figure 3.1: Illustration of the sampling strategy for the CQLF method. On the left,
the sampling as it is mathematically defined in Equation (3.3): an observation is a
point in ∆, sampled with some predefined measure P. On the right, the origin of this
mathematical definition. One sample N couples of points (x, y) in S2 where y = Ax,
where A = Aσ(l−1) . . . Aσ(0) where (σ(l − 1), . . . , σ(0)) is a word of length l is accepted
by G.

3.2 Lifting l-steps CSLSs to ASLSs
In this section, we present a lifting technique allowing us to reduce the computation of
the CJSR to the computation of a simpler JSR. We show that the CJSR of a given CSLS
can be bounded by the classical JSR of the set of all admissible product of a given length
l > 0, i.e. Πl defined in Equation (3.1).

Proposition 3.2.1. For all l > 0, given an automaton G and a set of matrices Σ, the
CJSR ρ(G,Σ) and the JSR ρ(Πl) satisfy

ρ(G,Σ)l ≤ ρ(Πl). (3.5)

Moreover, the equality holds asymptotically, i.e.

ρ(G,Σ) = lim
l→∞

ρ(Πl)1/l. (3.6)

Proposition 3.2.1 provides a lifting result, stating that the simpler quantity ρ(Πl)1/l

allows to approximate the true CJSR ρ(G,Σ). We call the ASLS S(Πl) the l-lifting
of the CSLS S(G,Σ).
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Proof. First we prove inequality (3.5). Since for all t > 0 and l > 0, Πlt ⊆ Πt
l , the

definition of the JSR (see Definition 1.2.2) yields

ρ(Πl) = lim
t→∞

max
{
‖A‖1/t : A ∈ Πt

l

}
≥ lim

t→∞
max

{
‖A‖1/t : A ∈ Πlt

}
.

(3.7)

Letting k := lt and using the definition of the CJSR (see Definition 1.3.6), the inequality
becomes

ρ(Πl) ≥ lim
t→∞

max
{
‖A‖l/k : A ∈ Πk

}
=
(

lim
k→∞

max
{
‖A‖1/k : A ∈ Πk

})l
= ρ(G,Σ)l,

(3.8)

which is the desired result. Now we prove asymptotic equality (3.6). First, given another
definition of the JSR (see Definition 1.2.2) for any l > 0,

ρ(Πl) ≤ max {‖A‖ : A ∈ Πl}

⇐⇒ ρ(Πl)1/l ≤ max
{
‖A‖1/l : A ∈ Πl

}
.

(3.9)

Taking the limit in both sides, it gives liml→∞ ρ(Πl)1/l ≤ ρ(G,Σ). Since ρ(Πl)1/l ≥
ρ(G,Σ) for any l > 0, it gives the desired result.

Even though other reductions of the CJSR computation problems to a simpler JSR have
already been proposed in the litterature (see e.g. [Dai11] and [PEDJ16]), to the best
of our knowledge, Proposition 3.2.1 is new, and will be useful for our purposes. Indeed
Proposition 1.2.3 and Proposition 3.2.1 yield that ρ(G,Σ) ≤ ρ(Πl)1/l ≤ γ∗(∆). It means
that if γ∗(∆) < 1, then ρ(G,Σ) < 1 and ‖ · ‖P ∗(∆) is a common Lyapunov function for
S(G,Σ).

Remark 3.2.1. This method is limited to CSLSs that admit a common quadratic
Lyapunov function. We say that a CSLS S(G(V,E),Σ) admits a CQLF if it admits a
set of MQLFs {‖ · ‖Pu , u ∈ V } where Pu = P for all u ∈ V . Example 3.2.1 illustrates
this. As it is explained in Section 1.3.3 and with counter-example 1.3.3, any CSLS does
not possess a CQLF. Indeed a CSLS S(G,Σ) admits a CQLF if the underlying ASLS
S(Σ) admits a CQLF.

Remark 3.2.2. LMIs (1.11) can be interpreted in terms of inclusions of convex sets
(see [Phi17, Remark 2.17]). For any scalar function f , let Ωf = {x : f(x) ≤ 1} be the
one-level set of f . For P ∈ Sn, LMIs (1.11) are equivalent to, for all A ∈ Σ,

AΩ‖·‖P
⊆ Ω‖·‖P

, (3.10)

where AΩ := {Ax : x ∈ Ω}.
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Example 3.2.1. Consider the CSLS defined by G and Σ, where Σ = {A1, A2} with

A1 =
(

0 2
−1/8 0

)
, A2 =

(
0 3/2
−1/4 0

)
, (3.11)

and G is as depicted in Figure 3.2.

a b

2

2

1

Figure 3.2: Automaton G for Example 3.2.1. If the systems switches to the second mode,
it has to switch twice in a row.

Consider the matrix
P =

(
1 0
0 5

)
, (3.12)

then there exists γ ∈ (0, 1) such that AT1 PA1 � γ2P and AT2 PA2 � γ2P . Hence ‖ · ‖P
is a CQLF for S(G,Σ). Following Remark 3.2.2, Figure 3.3 illustrates this.

2

2

1

Figure 3.3: Illustration of a CQLF for CSLSs. In grey, Ω‖·‖P
the one-level set of the

CQLF (the same for every node). In orange, A1Ω‖·‖P
. In blue, A2Ω‖·‖P

. One can indeed
observe that A1Ω‖·‖P

⊆ Ω‖·‖P
and A2Ω‖·‖P

⊆ Ω‖·‖P
, thus ‖ · ‖P is a CQLF and the

considered CSLS is stable.

For a given length l > 0, we are now able to find an upper bound on the CJSR of a
given CSLS by approximating a simpler JSR ρ(Πl). As explained in Chapter 2, previous
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results [KBJT19, BJW21] hold for data-driven approximation of the JSR. We will rely
on these previous works. This raises the next question.

Remark 3.2.3. If the existence of a CQLF for some CSLS S(G,Σ) is equivalent
to the existence of a CQLF for its underlying ASLS S(Σ), how is the problem of
approximating the CJSR different from the problem of approximating the
JSR? Following Remark 2.2.1, there are two main differences:

• First, the measure on the matrices in Πl is not necessarily uniform for l > 1.
Example 3.2.2 illustrates this.

• Second, suppose the measure is uniform, the probability of sampling any matrix
in Πl is 1/|Πl|. However, |Πl| is not known, and can be smaller than ml, as
Example 3.2.3 highlights.

Example 3.2.2. Consider the CSLS S(G,Σ), where G is as depicted in Figure 3.2, and
Σ contains two matrices A1 and A2. Suppose that the considered length is l = 2. It yields
Π2 = {A1A1, A1A2, A2A1, A2A2}. However, following the sampling strategy described in
Section 3.1, there are five sampling scenarios. The latter are presented in Table 3.1.

Random walk With probability Resulting matrix
(a, a, a) 1/8 A1 = A1A1
(a, a, b) 1/8 A2 = A1A2
(a, b, b) 1/4 A3 = A2A2
(b, a, a) 1/4 A4 = A2A1
(b, a, b) 1/4 A5 = A2A2 = A3

Table 3.1: Different random walks of length 2 in automaton G as depicted in Figure 3.2,
with the probability of happening and the corresponding modes.

It yields that the probability of sampling A1 is 1/8, the probability of sampling A2 is 1/8,
the probability of sampling A3 is 1/2, and the probability of sampling A4 is 1/4.

Example 3.2.3. Consider a CSLS S(G,Σ) with G as depicted in Figure 3.4, and
Σ = {A1, A2, A3}. Suppose l = 2. The matrix A1A3 /∈ Π2. It yields |Π2| < ml = 9.

Based on the reduction to ASLSs presented in Proposition 3.2.1, we present a gen-
eralization of Theorem 2.2.1 ([BJW21, Corollary 12]) for CSLSs taking into account
non-uniformity.

Theorem 3.2.2. Consider an automaton G, a set of matrices Σ ⊂ Rn×n, a fixed length
l > 0 and a set of samples ωN ⊂ ∆ obtained as explained in Section 3.1. Suppose
that N ≥ d := n(n + 1)/2. Suppose Πl contains no Barabanov matrices. Consider
the problem 3.4, P(ωN ) with solutions γ∗(ωN ) and P ∗(ωN ). Then, for a given level of
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a

b c

1 2

1

3

Figure 3.4: Automaton G for Example 3.2.3. The word (1, 3) is not accepted by G.

confidence β ∈ (0, 1), with probability at least β,

ρ(G,Σ) ≤ γ∗(ωN )

δ
(
ε(β,N)κ̃(P ∗(ωN ))

2pl,min

)1/l , (3.13)

where pl,min is the minimal probability among probabilities to draw each matrices in Πl,
and other quantities are given in Theorem 2.2.1.

Based on the lifting result exposed in Proposition 3.2.1, to the best of our knowl-
edge, Theorem 3.2.2 provides the first result allowing to obtain, from a set of
observations, data-driven probabilistic guarantee on the stability of a
given CSLS.

Proof. The proof follows exactly the same lines as the one of Theorem 2.2.1, except
that 1/ml (the probability to draw any matrix in Σl) is replaced with pl,min in proof of
[KBJT19, Corollary 11], following Remark 2.2.1.

Remark 3.2.4. In parallel to Remark 2.2.1, we are able to provide the following equivalent
alternative bound, replacing (3.13). With the same notations as in Equation 3.14,

ρ(Σ) ≤ γ∗(ωN )

δ
(1−(1−ε(β,N)/pl,max)κ̃′(P ∗(ωN ))

2

)1/l , (3.14)

where pl,max is the maximal probability among probabilities to draw each matrices in Πl.

Theorem 3.2.2 provides a general result. We will now build corollaries on top of this
theorem to show how it can used in practice.
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3.3 Further results in case of uniformity
Suppose that the probability measure on Πl is uniform. Then, pl,min in Equation (3.13)
can be replaced by 1/|Πl|. Let LG,l be the language accepted by G restricted to length
l. Since two different products of some length l (two products generated by different
words of length l) can yield the same matrix, |Πl| ≤ |LG,l|. Thus, one can bound the
cardinality of LG,l in order to bound the cardinality of Πl.

First, let us highlight the role of the entropy h(G) (see Definition 1.3.4). Its definition
allows to derive the following asymptotic result:

Corollary 3.3.1. For l→∞, consider that the probability measure on Πl is uniform.
Then, with the same setting as in Theorem 3.2.2, for a given level of confidence β ∈ (0, 1),
with probability at least β,

ρ(G,Σ) ≤ lim
l→∞

γ∗(ωN )
δ
(
ε(β,N)κ̃(P ∗(ωN ))2lh(G)/2

)1/l . (3.15)

Proof. The definition of the entropy (see Definition 1.3.4) yields

lim
l→∞
|LG,l| = lim

l→∞
2lh(G), (3.16)

and for any l > 0, pl,min = 1/|Πl| ≥ 1/|LG,l| in Equation 3.13.

Corollary 3.3.1 provides an asymptotic estimate of the probabilistic upper bound in
Theorem 3.2.2, as a function of the entropy of the automaton G. One can see that
an automaton with small entropy allows for a better estimate of the CJSR, for a fixed
number of samples N . This is illustrated in Figure 3.5.

In order to get some intuition about this result and the role of the entropy, let us consider
the case where the considered CSLS S(G,Σ) is such that the entropy of its automaton
h(G) = 0. This happens when all the nodes of G have an indegree and outdegree of one.
Then, it holds that, for any value of β ∈ (0, 1),

lim
l→∞

δ
(
ε(β,N)κ̃(P ∗(ωN ))2lh(G)/2

)−1/l
= 1, (3.17)

as δ(ε) ∈ (0, 1) for any constant ε (see Definition 2.2.6). This yields that, with an
arbitrarily large confidence level, and for any N , there is an arbitrarily small parameter
ν(l) > 0 depending on l such that

ρ(G,Σ) < (1 + ν(l))γ∗(ωN ). (3.18)

Intuitively, it means that if G has a zero entropy, with a large enough length l, it is
sufficient to have one observation to "capture" all the information necessary to derive a
quasi-deterministic upper bound on the CJSR.
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Figure 3.5: Shape of the factor δ
(
ε(β,N)κ̃(P ∗(ωN ))2lh(G)/2

)−1/l
in Corollary 3.3.1 with

respect to the entropy, for a confidence level β = 95%, a large l (here l = 50), and n = 2.
One can see that this factor converges to 1 as N increases, and that a smaller entropy
allows a faster convergence.

We can also verify that we can recover the arbitrary case. Suppose G is equivalent to
the CSLS S(G,Σ) is the ASLS S(Σ), where |Σ| = m. It means, G is a flower of order
m, as depicted in Figure 1.4. Then 2h(G) = m. As we assume uniformity, in this case,
Corollary 3.3.1 is exactly Theorem 2.2.1.

We now show that, for any finite l > 0, we can derive a practical bound using classical
results from graph theory. First, the following proposition holds:

Proposition 3.3.1. Let A be the adjacency matrix of some automaton G(V,E). Let
λ1 ≤ · · · ≤ λ|V | be the eigenvalues of A. Assume A is diagonalizable. Then, for any
l > 0, |Πl| ≤ |V |λl|V |.

Proof. Let G be the underlying graph of G without any labelling. Let wl(G) be the
number of walks in the G. We know that |Πl| ≤ |LG,l| ≤ wl(G).

It remains to show that wl(G) ≤ nλln, with n = |V |. Let v1, . . . ,vn be the corresponding
eigenvectors. For l ≥ 0, we can write the spectral form of Al as Al = ∑n

i=1 λ
l
ivivTi . Also,
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3.4. Conclusions

wl(G) = ∑n
i,j=1(Al)ij = 1TAl1 for 1 a vector of all ones. It follows that

wl(G) = 1T
(

n∑
i=1

λlivivTi

)
1 =

n∑
i=1

λli

(
vTi 1

)2
. (3.19)

Let αi :=
(
vTi 1

)2
, we can write wl(G) = ∑n

i=1 αiλ
l
i. We also know that w0(G) =∑n

i=1 αi = n. Since αi ≥ 0 for any i, it follows that

wl(G) =
n∑
i=1

αiλ
l
i = λln

n∑
i=1

αi

(
λi
λn

)l
≤ λln

n∑
i=1

αi = nλln, (3.20)

which gives the result.

Proposition 3.3.1 directly gives the following corollary:

Corollary 3.3.2. For l > 0, consider that the probability measure on Πl is uniform.
With the same setting as in Theorem 3.2.2, let A be the adjacency matrix of the automaton
G(V,E). Let λ1 ≤ · · · ≤ λ|V | be the eigenvalues of A. Assume A is diagonalizable. Then,
for a given level of confidence β ∈ (0, 1), with probability at least β,

ρ(G,Σ) ≤ γ∗(ωN )

δ
(
ε(β,N)κ̃(P ∗(ωN ))|V |λl|V |/2

)1/l . (3.21)

Corollary 3.3.2 provides a probabilistic upper bound in Theorem 3.2.2, as a function of
the largest eigenvalue of the adjacency matrix of G. One can see that an automaton with
a small largest eigenvalue allows for a better estimate of the CJSR, for a fixed number of
samples N and length l.

3.4 Conclusions
In this chapter, we generalized data-driven results for ASLSs to CSLSs.

We first proposed a lifting result allowing us to reduce the computation of the CJSR of a
given CSLS to the computation of a simpler JSR. We then raised two differences between
the sampling strategies of ASLSs and CSLSs (see Remark 3.2.3). We then generalized
the main theorem of [BJW21] to CSLSs in Theorem 2.2.1. In case of uniformity, we
investigated further the obtained generalization. Finally, we showed that the entropy of
the automaton plays a role, as a smaller entropy allows for a better guarantee for the
stability.
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Chapter 4

Multiple Lyapunov functions

In the precedent chapter, we found a method to solve data-driven stability guarantees for
CSLSs. However, this method requires strong assumptions. Following Remark 3.2.1, it can
only be applied to CSLSs that admit a common quadratic Lyapunov function. Moreover,
further results derived in Section 3.3 come with a strong assumption of uniformity, which
we know is not always respected as illustrated in Example 3.2.2. In this chapter, inspired
by previous results for ASLSs using a sensitivity analysis approach (see [RWJ21] and
Section 2.3), we present a method using multiple Lyapunov functions. It is thus
not restricted to CSLSs that possess a CQLF anymore. However, this method comes
with a strong assumption: we assume that we observe the nodes of the automaton
in addition to the states, which is a big change of setting compared to the method
presented in Chapter 3.

This chapter is based on [BWJ22a] and is organized as follows. In section 4.1, we formalize
the new problem. In Section 4.2, we derive a deterministic lower bound for the CJSR.
In Section 4.3, we show that we can generalize and even improve results of [RWJ21]
for CSLSs. In Section 4.4, we solve a sub-problem needed to derive a practical bound,
namely the estimation of the maximal norm of matrices in Σ. Finally, in Section 4.5, we
conclude about the derived method.

4.1 From CQLFs for ASLSs to MQLFs for CSLSs
Consider a CSLS S(G(V,E),Σ), where Σ = {A1, . . . , Am} ⊆ Rn×n, where m is the
number of matrices, and where G(V,E) is some automaton constraining the switching
sequence as explained in Section 1.3. We generalize the white-box problem (2.1) to
CSLSs, using MQLFs. Note that, for the sake of simplicity, we focus on 1-step Lyapunov
functions, thus l = 1, where l is as defined in Section 2.1. Generalizing this method to
longer traces is further work.

In this chapter, we assume that we observe both the nodes of the automaton and the
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states. We redefine our set ∆. Let ∆ = E × S. We seek to solve the following program:

P(∆) : min
{Pu∈Rn×n, u∈V }

γ>0

γ (4.1a)

s.t. ∀u ∈ V, Pu ∈ Sn, (4.1b)
∀((u, v, σ), x) ∈ ∆, (Aσx)TPv(Aσx) ≤ γ2xTPux. (4.1c)

We denote by γ∗(∆) and {P ∗u (∆), u ∈ V } the solutions of program 4.1, P(∆). For u ∈ V ,
γ∗(∆) and matrices P ∗(∆)u are equal to γ∗ and Pu in Theorem 1.3.3. Thus, if γ∗(∆) < 1,
the set of ellipsoidal norms {‖ · ‖P ∗(∆)u

, u ∈ V } is a set of MQLFs.

Remark 4.1.1. In parallel to Remark 3.2.1, this method is not limited to CSLSs that
only admit a CQLF, it extends to all CSLSs that admit a set of MQLFs. We give an
example as well as a visualization of a CSLS that admit a set of MQLFs in Example 4.1.1.

Remark 4.1.2. LMIs (1.20) can also be interpreted in terms of inclusions of convex
sets (see Remark 3.2.2 and [Phi17, Remark 2.17]). Consider the CSLS S(G(V,E),Σ)
with Σ = {A1, . . . , Am}. For the set {Pu ∈ Sn, u ∈ V }, LMIs (1.20) are equivalent to
the following condition: for all edges (u, v, σ) ∈ E,

AσΩ‖·‖Pu
⊆ Ω‖·‖Pv

. (4.2)

Example 4.1.1 ([Phi17, Example 2.16]). Consider the CSLS defined by G and Σ, where
Σ = {A1, A2} with

A1 =
(

0 2
−1/8 0

)
, A2 =

(
0 1/8
−2 0

)
, (4.3)

and G is as depicted in Figure 3.2.

Consider the matrices

Pa =
(

1 0
0 5

)
, Pb =

(
40 0
0 1/8

)
. (4.4)

Then, there exists γ ∈ (0, 1) such that AT1 PaA1 � γ2Pa, AT2 PaA2 � γ2Pb, and
AT2 PbA2 � γ2Pa. Hence {‖ · ‖Pu , u ∈ V } is a set of MQLFs for S(G,Σ). Follow-
ing Remark 4.1.2, Figure 4.1 illustrates this.

In a data-driven fashion, Σ is not known, and neither is the automaton G(V,E). As for
the method based on CQLF, ∆ is not known. However, in order to derive this method,
we assume that nodes are observed. One observation consists in an ordered pair of
points in an extended state space Rn × V . The i-th observation is a couple of initial and
final states and nodes. It is noted ((xi, ui), (yi, vi)) ∈ (Rn × V )2, where (ui, vi, σi) ∈ E
for some label σi ∈ {1, . . . ,m}, with yi = Aσixi. For any i ∈ [N ], xi and (ui, vi, σi) are
drawn randomly, uniformly and independently from respectively S and E. We attract
the attention of the reader on the fact that the sampled mode is not known.

31



4.1. From CQLFs for ASLSs to MQLFs for CSLSs

2

2

1

Figure 4.1: Illustration of a set of MQLFs for CSLSs. In grey, for each node u ∈ {a, b},
Ω‖ ·‖Pu

. For each node u = a, b, in orange, A1Ω‖·‖Pu
and, in blue, A2Ω‖·‖Pu

. One can
indeed observe that A1Ω‖·‖Pa

⊆ Ω‖·‖Pa
, A2Ω‖·‖Pa

⊆ Ω‖·‖Pb
, and A2Ω‖·‖Pb

⊆ Ω‖·‖Pa
. It

yields that {‖ · ‖Pu , u ∈ V } is a set of MQLFs and the considered CSLS is stable. We
draw the attention of the reader to the fact that, unlike in Figure 3.3, the two ellipsoids
Ω‖ ·‖Pu

are not identical for u ∈ V .

We thus introduce the set of N observations as

ωN := {((ui, vi, σi), xi), i = 1, . . . , N} ⊂ ∆, (4.5)

where xi, ui, vi and σi are as described above. An illustration of this sampling strategy is
provided in Figure 4.2.

Now, for a given set of observations ωN , we introduce P(ωN ), the data-driven version of
program P(∆):

P(ωN ) : min
{Pu∈Rn×n, u∈V }

γ>0

γ (4.6a)

s.t. ∀u ∈ V, Pu ∈ X := Sn ∩ {M ∈ Rn×n : I �M � CI}, (4.6b)
∀((u, v, σ), x) ∈ ωN , (Aσx)TPv(Aσx) ≤ γ2xTPux, (4.6c)

for a large C ≥ n. We denote γ∗(ωN ) and P ∗(ωN ) as the solutions of program P(ωN ).
The problem (4.6), P(ωN ) differs from problem (4.1), P(ωN ) in two ways: the LMIs
expressed in constraint (4.6c) are restricted to ωN , and compactness of the domain of
the matrices Pu is imposed in constraint (4.6b)1.

1We will need this to prove Proposition 4.3.1
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4.2. A deterministic lower bound

∆ = E × Rn

((u1, v1, σ1), x1)

((u2, v2, σ2), x2)

((uN , vN , σN ), xN )

ωN = {((u1, v1, σ1), x1), ((u2, v2, σ2) , x2),
. . . , ((uN , vN , σN ), xN )}

. . .

P

Mathematical setting "Real world" setting

σ1 = 2

σ2= 3 σN = 4

u2

v2

u1

v1

uN

vN

S

x1
y1 = A2x1

x2

y2 = A3x2xN

yN = A4xN

S
(observed)

G(V, E)
(V observed)

Figure 4.2: Illustration of the sampling strategy for the MQLF method. On the left, the
sampling as it is mathematically defined in Equation (4.5): an observation is a point in ∆,
sampled with measure P = Pσ×PS, where Pσ and PS are the uniform probability measure
on respectively E and S. On the right, the origin of this mathematical definition. One
sample N couples of points ((u, x), (v, y)) in (V × S)2 where y = Aσx and (u, v, σ) ∈ E.
We invite the reader to compare this figure and its caption with Figure 3.1 and its caption
in order to clearly understand the difference between the settings of the CQLF and
MQLF methods.

As in Chapter 3, for a given set of observations ωN , the problem tackled is the inference,
with a user-defined confidence level, of γ∗(∆) from γ∗(ωN ) and the set {P ∗u (ωN ), u ∈ V }.

4.2 A deterministic lower bound
In the same fashion as in [KBJT19], we first derive a deterministic lower bound on the
CJSR:

Proposition 4.2.1. Let ωN be a set of N observations from ∆ as explained above.
Consider the program (4.6), P(ωN ) for the CSLS S(G,Σ) with optimal cost γ∗(ωN ).
Then the following holds:

max{2−h(G)/2), n−1/2}γ∗(ωN ) ≤ ρ(G,Σ). (4.7)

To the best of our knowledge, Proposition 4.2.1 provides the first way to obtain
from data deterministic sufficient conditions for the instability of a
data-driven CSLS.
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4.3. Generalization of the sensitivity analysis approach

Proof. Notice that P(ωN ) defined in (4.6) is a relaxation of program 4.1, P(∆). As a
consequence, we have γ∗(∆) ≥ γ∗(ωN ). Following Corollary 1.3.1,

ρ(G,Σ) ≥ max{2−h(G)/2), n−1/2}γ∗(∆) ≥ max{2−h(G)/2), n−1/2}γ∗(ωN ), (4.8)

which is the desired result.

We observe in Proposition 4.2.1 that, as for the first method (see Section 3.3 and
Figure 3.5), the entropy also plays a role in the approximation of the CJSR. However, it
does not play the same role, as Proposition 4.2.1 comes from a white-box result on the
lower bound.

Remark 4.2.1. Following [LPJ19, Corollary 1], one can show that the lower bound of
Proposition 4.2.1 can be improved thanks to Sums-of-squares approximation methods,
introduced in [PJ08] for the approximation of the joint spectral radius and generalized in
[PEDJ16] for the CJSR. Generalizing this method to Sums-of-squares functions is thus
considered as interesting further work.

4.3 Generalization of the sensitivity analysis approach
In this section, we will generalize results for ASLSs introduced in [RWJ21] and explained
in Section 2.3. First, we generalize and improve Lemma 2.3.1:

Proposition 4.3.1. Consider the program (4.1), P(∆) for the CSLS S(G(V,E),Σ)
with optimal cost γ∗(∆). There exists a set ω ⊂ ∆ with |ω| = |V |n(n + 1)/2 such
that γ∗(ω) = γ∗(∆), where γ∗(ω) is the optimal cost of program P(ω) as defined in
Equation (4.6).

Proof. First, from the arguments in [RWJ21, Lemma 1], we claim that there exists ω ⊂ ∆
with |ω| = |V |n(n+ 1)/2 + 1 such that γ∗(ω) = γ∗(∆). Now, we consider the problem
P(ω) as defined in (4.6). With a similar argument as the one in [BJW21, Theorem 2], we
can conclude that the objective remains unchanged removing one of the points in ω.

Remark 4.3.1. There are two main differences between Proposition 4.3.1 and Lemma
2.3.1. First, the proposition is derived for CSLSs instead of ASLSs. Second, the cardinality
of the set is the number of variables of the considered program (4.6) minus one, while it
is the number of variables of the considered program (2.3) in Lemma 2.3.1.

We now generalize Proposition 2.3.2. The following proposition provides a bound on
the conservatism of the sampled problem (4.6), P(ωN ), with respect to the white-box
problem 4.1, P(∆) as a function of N , the number of sampled points:

Proposition 4.3.2. Consider the program (4.1), P(∆) for the CSLS S(G(V,E),Σ)
with optimal cost γ∗(∆). Let ωN = {(xi, (ui, vi, σi)), i = 1, . . . , N} be a set of N samples
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4.3. Generalization of the sensitivity analysis approach

from ∆ as explained above. Suppose N ≥ |V |n(n+ 1)/2. Then, for all ε ∈ (0, 1], with
probability at least

β(ε,m,N) = 1− |V |
(
n(n+ 1)

2

)(
1− ε

m|V |

)N
, (4.9)

there exists a set ω′N = {(x′i, (ui, vi, σi)), i = 1, . . . , N} ⊂ ∆ such that γ∗(ω′N ) = γ∗(∆)
with ‖xi − x′i‖ ≤

√
2− 2δ(ε).

Proof. The proof follows the same lines as the one of [RWJ21, Proposition 2] except for
three points. First the number of variables of the problem is not the same. Second, given
that the edges are sampled uniformly (see Section 4.1), the probability of sampling a
certain label σ is at least 1/(m|V |), while it is 1/m in the unconstrained case. Third,
Proposition 4.3.1 allows to improve the probability β according to Remark 4.3.1.

We now apply a sensitivity analysis approach in order to obtain from Proposition 4.3.2 a
probabilistic upper bound on γ∗(∆) from γ∗(ωN ) and the matrices P ∗u (ωN ) for u ∈ V .

Theorem 4.3.3. Consider the program 4.1, P(∆) for the CSLS S(G(V,E),Σ) with
optimal cost γ∗(∆). Let ωN be a set of N samples from ∆ as explained in Section 4.1,
with N ≥ |V |n(n+1)/2. Consider the sampled program 4.6, P(ωN ) with solutions γ∗(ωN )
and {P ∗u (ωN ), u ∈ V }. For any β ∈ (0, 1), let

ε = m|V |
(

1− N

√
2(1− β)
|V |n(n+ 1)

)
. (4.10)

Then, with probability at least β,

γ∗(∆) ≤ γ∗(ωN ) + max
((u,v,σ),x)∈ωN

{√
λumax
λumin

γ∗(ωN ) +
√
λvmax
λumin

A(Σ)
}
d(ε), (4.11)

with d(ε) =
√

(2− 2δ(ε)), λumin and λumax respectively the minimal and maximal eigenvalue
of P ∗u (ωN ), and

A(Σ) = max
A∈Σ
‖A‖. (4.12)

Proof. For the sake of readibility, let γ = γ∗(ωN ) and Pu = P ∗u (ωN ) for any u ∈ V . By
definition, for any ((u, v, σ), x) ∈ ωN ,

‖Aσx‖Pv ≤ γ‖x‖Pu . (4.13)

Consider now for any P ∈ Sn its Cholesky decomposition P = LTL. Then the following
holds:

‖x‖P = ‖Lx‖ ≤ ‖L‖‖x‖ ≤
√
λmax(P )‖x‖, (4.14)
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where λmax(P ) is the maximal eigenvalue of P . Let us now consider an arbitrary
constraint ((u, v, σ), x) ∈ ∆, and define y = x+ ∆x with ((u, v, σ), x) ∈ ωN . Then, for
any ((u, v, σ), x) ∈ ωN , it holds that

‖Aσ(x+ ∆x)‖Pv ≤ ‖Aσx‖Pv + ‖Aσ∆x‖Pv

≤ γ‖x‖Pu + ‖Aσ∆x‖Pv

= γ‖(x+ ∆x)−∆x‖Pu + ‖Aσ∆x‖Pv

≤ γ‖x+ ∆x‖Pu + γ‖∆x‖Pu + ‖Aσ∆x‖Pv

≤ γ‖x+ ∆x‖Pu + γ‖∆x‖
√
λumax + ‖Aσ‖‖∆x‖

√
λvmax

≤ γ‖x+ ∆x‖Pu + γ‖∆x‖
√
λumax

‖x+ ∆x‖Pu√
λumin

+ ‖Aσ‖‖∆x‖
√
λvmax

‖x+ ∆x‖Pu√
λumin

=
[
γ +

(√
λumax
λumin

γ +
√
λvmax
λumin

‖Aσ‖
)
‖∆x‖

]
‖x+ ∆x‖Pu .

(4.15)

For any β ∈ (0, 1), let ε be defined such as in Equation (4.10), then, given that N ≥
|V |n(n+ 1)/2, Proposition 4.3.2 guarantees the existence of a set ω′N with N points such
that γ∗(ω′N ) = γ∗(∆) with probability at least β, and such that for any ((u, v, σ), x) ∈ ωN ,
there exists ∆x such that ((u, v, σ), x+ ∆x) ∈ ω′N and ‖∆x‖ ≤ d(ε). Hence, by definition
and following Equation (4.15),

γ∗(∆) = γ∗(ω′N )

≤ γ + max
((u,v,σ),x)∈ωN

{√
λumax
λumin

γ +
√
λvmax
λumin

A(Σ)
}
d(ε),

(4.16)

with probability at least β.

In order to get a fully data-driven bound as expressed in Equation (4.11), one still needs
to approximate A(Σ), as Σ is an unknown quantity in the data-driven setting.

4.4 Estimation of the maximal norm
In this section, we derive a theorem that gives a probabilistic upper bound on A(Σ) as
defined in Equation (4.12). First, note that the following holds [Jun09, Proposition 2.7]:

A(Σ) := η∗(∆) = min
η≥0

s.t. ∀((u, v, σ), x) ∈ ∆, ‖Aσx‖ ≤ η. (4.17)

For a given set of observations ωN , with the same idea as in Section 2.1, Section 3.1 and
Section 4.1, let us infer the value of η∗(∆) = A(Σ) from the solution of its data-driven
version

η∗(ωN ) = min
η≥0

s.t. ∀((u, v, σ), x) ∈ ωN , ‖Aσx‖ ≤ η, (4.18)
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with a user-defined confidence level.

Note that the quantity A(Σ) already appears in Theorem 2.3.3, although we decided not
to present it in this thesis (see Remark 2.3.1). The reason is that authors of [RWJ21] use
the general chance-constrained theorem [BJW21, Theorem 6], which requires a technical
assumption [BJW21, Assumption 8] that can be violated in our setting. We give a proof
for Theorem 4.4.1 allowing us to get rid of this assumption.

Theorem 4.4.1. Let ωN be a set of N samples from ∆ as explained in Section 4.1.
Consider the solutions η∗(∆) and η∗(ωN ) defined in Equation (4.17) and Equation (4.18)
respectively. For any β′ ∈ (0, 1), let

ε′ = 1− N
√

1− β′. (4.19)

Then, with probability at least β′,

A(Σ) = η∗(∆) ≤ η∗(ωN )
δ(ε′m|V |/2) . (4.20)

Proof. Let the violating set V (η) := {((u, v, σ), x) ∈ ∆ : ‖Aσx‖ > η}, and let f : R →
[0, 1] : η 7→ f(η) = P[V (η)] be its measure. Note that f is decreasing. For any ε′ ∈ [0, 1],
we start by showing the following equation:

PN [ωN ⊂ ∆ : f(η∗(ωN )) ≤ ε′] = 1− (1− ε′)N . (4.21)

Consider one sampled constraint d ∈ ∆, and let ηε′ ∈ R be such that f(ηε′) = ε′. Then
P[d ∈ ∆ : f(η∗({d})) > ε′] = P[d ∈ ∆ : f(η∗({d})) > f(ηε′)]. Since f is decreasing and
has [0, 1] as codomain, P[d ∈ ∆ : f(η∗({d})) > f(ηε′)] = 1− ε′, hence the following holds:

P[d ∈ ∆ : f(η∗({d})) > ε′] = 1− ε′. (4.22)
Since samples in ωN are i.i.d., the following holds:

PN [ωN ⊂ ∆ : f(η∗(ωN )) > ε′] =
(
P[d ∈ ∆ : f(η∗({d})) > ε′]

)N = (1− ε′)N , (4.23)

which is equivalent to Equation (4.21).

Now, define the projected violating set S̃ ⊆ S as follows:

S̃ = {x ∈ S : ∃(u, v, σ) ∈ E, ‖Aσx‖ > η∗(ωN )}. (4.24)

For any (u, v, σ) ∈ E, we define:

S̃(u,v,σ) = {x ∈ S : ‖Aσx‖ > η∗(ωN )}. (4.25)

Thus, S̃ = ∪(u,v,σ)∈E S̃(u,v,σ). In the worst case, the sets {S̃(u,v,σ)} are disjoint. In this
case, Px[S̃] = ∑

(u,v,σ)∈E Px[S̃(u,v,σ)] and

P[V (η)] =
∑

(u,v,σ)∈E
Px[S̃(u,v,σ)]PE [{(u, v, σ)}]

≥ 1
m|V |

∑
(u,v,σ)∈E

Px[S̃(u,v,σ)] = Px[S̃]
m|V |

,
(4.26)
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where Px and PE denote the uniform (probability) measure on S and E respectively. This
means that P[V (η)] ≤ ε′ implies Px[S̃] ≤ ε′m|V |.

The rest of the proof follows the same lines as the proof of [KBJT19, Theorem 15].

The probabilistic approximation of A(Σ) as stated in Theorem 4.4.1 allows to directly
derive the following corollary, which provides a pratical probabilistic bound on the CJSR
of a given CSLS given a set of observations.

Corollary 4.4.1. Consider the program (4.1), P(∆) for the CSLS S(G(V,E),Σ) with
optimal cost γ∗(∆). Let ωN be a set of N samples from ∆ as explained in Section 4.1,
with N ≥ |V |n(n + 1)/2. Consider the sampled program (4.6), P(ωN ) with solution
γ∗(ωN ) and {P ∗u (ωN ), u ∈ V }. For any β, β′ ∈ (0, 1), let

ε = m|V |
(

1− N

√
2(1− β)
|V |n(n+ 1)

)
, (4.27)

and
ε′ = 1− N

√
1− β′. (4.28)

Then, with probability at least β + β′ − 1,

ρ(G,Σ) ≤ γ∗(ωN ) + max
(x,(u,v,σ))∈ωN

{√
λumax
λumin

γ∗(ωN ) +
√
λvmax
λumin

η∗(ωN )
δ(m|V |ε′/2)

}
d(ε), (4.29)

with d(ε) =
√

2− 2δ(ε), and, for u ∈ V , λumin and λumax respectively the minimal and
maximal eigenvalue of P ∗u (ωN )

Based on a sensitivity analysis approach, Corollary 4.4.1 provides an alternative
way to obtain probabilistic stability certificate for data-driven CSLSs.

Proof. Following Theorem 1.3.3, Equation (4.29) holds if Equation (4.11) and Equa-
tion (4.20) both hold. Theorem 4.3.3 states that Equation (4.11) holds with probability
β, and Theorem 4.4.1 states that Equation (4.20) holds with probability β′. Thus

PN [ωN ⊂ ∆ : (4.11) and (4.20) hold]
= 1− PN [ωN ⊂ ∆ : (4.11) or (4.20) does not hold]
≥ 1− PN [ωN ⊂ ∆ : (4.11) does not hold]− PN [ωN ⊂ ∆ : (4.20) does not hold]
≥ 1− (1− β)− (1− β′)
=β + β′ − 1,

(4.30)

which concludes the proof.
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4.5 Conclusions
In this chapter, we presented a second method to derive probabilistic guarantee for
stability of CSLSs. This method, compared to the one presented in Chapter 3, does not
require the CSLS to possess a common Lyapunov function, but requires that we are able
to observe the nodes of the underlying automaton.

We leveraged the sensitivty analysis approach such as presented in Section 2.3. As for
the first method presented in Chapter 3, we used the CJSR as a tool to approximate the
black-box stability of CSLSs. In particular, we provided a deterministic lower bound on
the CJSR, as well as a probabilistic upper bound on it. We also derived a probabilistic
guarantee on the maximal norm among the norms of matrices driving the considered
CSLS. The closed form of the approximation presented in Equation (4.29) shows that a
we obtain tighter approximations of the CJSR for a large number of samples, but also
for smaller confidence levels.
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Part III

Comparisons and examples
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Chapter 5

Qualitative and quantitative
analysis

In this chapter, we will provide qualitative, as well as quantitative comparisons between
the CQLF method presented in Chapter 3 and the MQLF method presented in Chapter 4.

The purpose is twofold. First, from the theory derived in Chapter 3 and Chapter 4,
we want to characterize the limitations of each method, and precise when a method is
more limited than another. In order to do this, we will distinguish four different cases.
We will particularly focus on the importance of the trace length when using the CQLF
method. We will provide simulations in order to illustrate and quantitatively verify these
assertions. Second, we want to analyze further the two bounds. We will analyze the
influence of certain parameters on the behaviours of both bounds.

5.1 Qualitative comparisons
In this section, we will provide a qualitative comparison between the CQLF and the
MQLF method.

First, as a general comment, both methods come with their assumptions. Indeed, it may
be difficult to use the CQLF method in practice. Indeed, Theorem 3.13 requires the
knowledge of pl,min, the minimal probability among probabilities to draw matrices in Πl,
the set of all possible matrices products of length l. Moreover, corollaries presented in
Section 3.3 (Corollary 3.3.1 and Corollary 3.3.2) both come with strong assumptions and
prior knowledge, namely the entropy and the largest eigenvalue of the adjacency matrix
of the automaton. On the other hand, the MQLF method is based on the observation of
the nodes of the automaton, while the latter is considered as unknown in the data-driven
setting. Moreover, unlike the CQLF method, it was not designed to handle traces of
length l > 1.
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Now, before going further on the difference between the four different cases mentioned
above, let us note the following inequalities1.

Proposition 5.1.1. Consider the CSLS S(G,Σ), let Πl be the set of accepted product
of matrices of length l. Then, for any trace length l,

ρ(Σ) = ρ(Π1) ≥ ρ(Π2)1/2 ≥ · · · ≥ ρ(Πl)1/l ≥ ρ(G,Σ). (5.1)

It means that a certain l-lifting S(Πl) of a CSLS (as defined in Chapter 3) may allow or
not to find a stability certificate. Let us introduce in Figure 5.1 four different cases.

ρ(G,Σ) ≤ ρ(Σ)
ρ(G,Σ) < 1

ρ(G,Σ) ≤ ρ(Σ)

1 ≤ ρ(G,Σ) ≤ ρ(Σ)ρ(G,Σ) = ρ(Σ) < 1

ρ(G,Σ) < ρ(Σ)
ρ(G,Σ) < 1

ρ(G,Σ) < ρ(Σ) < 1 ρ(G,Σ) < 1 < ρ(Σ)

CSLS instable

CSLS stable

Underlying instable
ASLS

Underlying stable
ASLS

JSR 6=CJSR
JSR=CJSR

Case 1 Case 2 Case 3 Case 4

Figure 5.1: Four cases considered in Chapter 5.

In the first case of Figure 5.1, the 1-lift will provide the right approximation for the
CJSR. In this case, the MQLF method is not less limited than the CQLF
method. The choice of the method thus mainly depends on the assumptions and the
prior knowledge, or on a heuristic.

In the second case, the choice of the method depends on the goal of its application.
Suppose that the application is to find a stability certificate, then the CQLF method
may provide one, for each value of l greater or equal than 1. We know that the
model-based CQLF approximation of the JSR S(Σ), i.e. γ∗(∆) as defined in Section 3.1,
belongs to the interval [ρ(Σ),min{m1/2, n1/2}ρ(Σ)] (see Theorem 1.2.4). Thus, as long
as ρ(Σ) < max{n−1/2,m−1/2}, it is guaranteed for N large enough to find a stability
certificate for all l-liftings with the CQLF method, as γ∗(ωN ) tends to γ∗(∆) for N
going to infinity. However, suppose that the application is the approximation of the
CJSR, and not only the stability certificate. Then, assuming that enough samples are
harvested, the usage of the MQLF is less limited. An illustration of this case is provided
in Figure 5.2.

1Proving this monoticity property remains an open problem, we conjectured it from our observations
in the simulations.
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In the third case, suppose that only a dataset with horizon 1 is available, then it is
impossible for the CQLF to provide a stability certificate. In this case, there is
an integer l̃ > 1 such that

ρ(Σ) = ρ(Π1) ≥ · · · ≥ ρ(Πl̃−1)1/(l̃−1) ≥ 1 > ρ(Πl̃)
1/l̃ ≥ · · · ≥ ρ(G,Σ). (5.2)

The usage of the CQLF method will thus depend on the dataset. Suppose that l̃ is
very large, then it is possible that, in practice, a l̃-horizon dataset is available for a
given application. The MQLF method, on the other hand, will directly tend to the
approximation of the CJSR, i.e. γ∗(∆), solution of program (4.1). An illustration of this
case is provided in Figure 5.3

ρ(G,Σ)

ρ(Πl)1/l

ρ(Σ) = ρ(Π1)

l-step
lifting

Stability zone

1

...

...

Figure 5.2: Illustration of the second case of the Figure 5.1. In red, the MQLF method.
In black, the CQLF method for l = 1 and l > 1. One can obtain a stability certificate
with any l-lifting, but it may not be a good approximation of the CJSR.

Finally, in the fourth case, only the MQLF method may provide a deterministic
instability certificate. Indeed, it is not straightforward to derive a lower bound on the
CJSR with the CQLF method, where it is the case for the MQLF method (see Section 4.2
and Proposition 4.2.1).

As explained above, even if the CQLF method proves to be more efficient than
the MQLF method, its limitations highly depend on the trace length l of
the available observations, and, depending on the situation, may be more
conservative.

5.2 Quantitative comparisons
In this section, we will perform numerical experiments on examples. The goal is twofold.
First, we want to verify that we indeed observe the qualitative remarks stated in Section 5.1.
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ρ(G,Σ)

ρ(Πl)1/l

ρ(Σ) = ρ(Π1)

l-step
lifting

Stability zone

1

...

...

Figure 5.3: Illustration of the third case of the Figure 5.1. In red, the MQLF method. In
black, the CQLF method for l = 1 and l > 1. Obtaining a stability certificate depends
on the lifting with the CQLF method.

Then, we analyze further the bounds on different examples where we vary different
parameters2.

5.2.1 Illustrations of the qualitative comparison

First, note that, in this section, we use the general theorem for the CQLF bound (see
Theorem 3.13), we assume pl,min as known. For every comparaison below, unless otherwise
explicitly stated, we choose the parameters given in Table 5.13.

Parameter Value
Dimension n 2
Number of matrices m 2
Trace length l 1
Number of nodes |V | 2
Overall confidence level β 99%
"Sub-confidence" levels (100% + β)/2 99.5%

Table 5.1: Parameters for the quantitative analysis, unless otherwise stated.

Note that, following the qualitative analysis, we chose l = 1 in order to highlight the
limitations of the CQLF method. We present the probabilistic bounds computed with
the CQLF and MQLF method with the parameters presented in Table 5.1 in Figure 5.4,

2These simulation were performed thanks to the Julia code attached to this thesis. For an overview
of the code and implemented functions, see Appendix B.

3"Sub-confidence levels" states for β and β′ in Theorem 4.3.3. Suppose we want to reach an overall
confidence level of β + β′ − 1 = β with β = β′, then β = β′ = (1 + β)/2.
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Figure 5.5, Figure 5.6, and Figure 5.7. The considered examples (described below) indeed
allow to verify the assertions made in Section 5.1.

We describe examples corresponding to the four cases that have been analyzed in
Section 5.1 and as illustrated in Figure 5.1. We start with Example 5.2.1, corresponds to
the first case, where the CSLS is stable, and the JSR of the underlying JSR is the same
as the CJSR of the CSLS.

Example 5.2.1. Consider the CSLS S(G,Σ), with the set Σ = {A1, A2} defined as

A1 =
(
−0.1165 −0.4876
−0.4866 0.7275

)
, A2 =

(
−0.9524 0.3378
−0.0104 0.4850

)
, (5.3)

and G as depicted in Figure 3.2. The matrices were chosen such that ρ(Σ) = 0.95 (verified
with the Julia toolbox presented in Appendix B). Also, using [PEDJ16, Lemma 3.7], the
sequence of edges ((a, b, 2), (b, a, 2)) is a cycle and

√
ρ(A2

2) = 0.95 yields ρ(G,Σ) ≥ 0.95.
Thus ρ(G,Σ) = 0.95. l = 1 implies that the minimal probability among probabilities to
draw is matrix is the probability to draw A1, which is p1,min = 1/4.

We now present Example 5.2.2, corresponding to the second case presented in Figure 5.1.
In this case, ρ(G,Σ) < ρ(Σ) < 1.

Example 5.2.2. Consider the CSLS S(G,Σ), with the set Σ = {A1, A2} defined as

A1 =
(
−0.0613 −0.2566
−0.2561 0.3828

)
, A2 =

(
−0.9023 0.3201
−0.0098 0.4595

)
, (5.4)

and G as depicted in Figure 5.8.

Matrices were generated such that ρ(A1) = 0.5 and ρ(A2) = 0.9. The JSR of the
underlying ASLS ρ(Σ) = 0.9 happens with the word (σ(0), σ(1), . . . ) = (1, 1, . . . ). This
JSR was verified with our Julia toolbox (see Appendix B). However, the CJSR ρ(G,Σ) =
0.5. An upper bound ρ(G,Σ) . 0.5 was found with the Julia white-box toolbox, and
[PEDJ16, Lemma 3.7] yields ρ(G,Σ) ≥ ρ(A1) = 0.5. The minimal probability p1,min =
1/4 and corresponds to the sampling of the second mode.

We continue by presenting Example 5.2.3, corresponding to the third case of Figure 5.1.
This case corresponds to the case where ρ(G,Σ) < 1, but the JSR of the underlying
ASLS ρ(Σ) ≥ 1.

Example 5.2.3. Consider the same CSLS as the one presented in Example 5.2.2 except
that A2 is defined as

A2 =
(
−1.5038 0.5334
−0.0164 0.7659

)
. (5.5)

Thus ρ(A2) = 1.5 ≥ 1, and with a very similar reasoning as for Example 5.2.2, ρ(G,Σ) =
0.5 and ρ(Σ) = 1.5. p1,min remains 1/4.
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102 103 104

Number of observations N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Stability zone
(G, ) = ( )

MQLF lower bound
CQLF upper bound (  = 99%)
MQLF upper bound (  = 99%)

Figure 5.4: Bounds found by the two
methods for the first case example (Exam-
ple 5.2.1), and the parameters described in
Table 5.1, from N = 100 to N = 10000.
Both methods tend to the same value, de-
spite that l = 1. The CQLF method seems
to converge faster, and finds a 99% stability
certificate faster.

102 103 104

Number of observations N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Stability zone
(G, )
( )

MQLF lower bound
CQLF upper bound (  = 99%)
MQLF upper bound (  = 99%)

Figure 5.5: Bounds found by the two meth-
ods for the second case example (Exam-
ple 5.2.2), and the parameters described in
Table 5.1, from N = 100 to N = 10000. If
the goal is to find a stability certificate, then
the CQLF method is faster, even for l = 1.
If the goal is to approximate the CJSR, the
MQLF method is less limited, the CQLF
method would require a larger trace length
l.

102 103 104

Number of observations N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Stability zone
(G, )
( )

MQLF lower bound
CQLF upper bound (  = 99%)
MQLF upper bound (  = 99%)

Figure 5.6: Bounds found by the two meth-
ods for the third case example (Exam-
ple 5.2.3), and the parameters described
in Table 5.1, from N = 100 to N = 10000.
The MQLF method finds 99% stability cer-
tificate, unlike CQLF method with l = 1.

102 103 104

Number of observations N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Stability zone
(G, ) = ( )

MQLF lower bound
CQLF upper bound (  = 99%)
MQLF upper bound (  = 99%)

Figure 5.7: Bounds found by the two meth-
ods for the fouth case example (Exam-
ple 5.2.4), and the parameters described
in Table 5.1, from N = 100 to N = 10000.
A deterministic instability certificate is di-
rectly found by the MQLF method.
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a b

2

1

1

Figure 5.8: Automaton G for the second case considered in Chapter 5. If the second
mode is chosen then it is only chosen once.

We finish by presenting Example 5.2.4, corresponding to the case where the CSLS is
instable.

Example 5.2.4. The instable CSLS considered in this example is the same as the CSLS
considered in Example 5.2.1 except that the matrices are

A1 =
(
−0.1839 −0.7699
−0.7684 1.1487

)
, (5.6)

and A2 as defined in Equation (5.5). A similar reasoning as for Example 5.2.1 allows to
conclude that ρ(G,Σ) = ρ(Σ) = 1.5, and pl,min remains 1/4.

We present an additional numerical result in Figure 5.9 in order to confirm the expected
behaviours as theoretically predicted in Figure 5.2 and Figure 5.3, for trace lengths l > 1.
Example 5.2.5 describes the CSLS corresponding to Figure 5.9.

0 1000 2000 3000 4000 5000 6000
Number of observations N

100

2 × 100

3 × 100

4 × 100

CQLF upper bound
(G, )
( 1)1/1

l = 1
( 2)1/2

l = 2
( 3)1/3

l = 3
( 4)1/4

l = 4
( 5)1/5

l = 5

Figure 5.9: Illustration of the limitation of the CQLF method for small trace lengths l.
Results of the CQLF upper bound for a CSLS for which the value l̃ = 4 such as defined
in Equation (5.2): ρ(Π4)1/4 < 1 ≤ ρ(Π3)1/3. With l < 4, it is impossible for the CQLF
method to provide a stability probabilistic certificate.
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Example 5.2.5. Consider a CSLS S(G,Σ) with G as depicted in Figure 5.10, |Σ| =
m = 5, and where the matrices are such that ρ(G,Σ) ≈ 0.8300, and that the l-liftings
yield the values in Table 5.2 for l = 1, . . . , 5. These values were computed with our Julia
white-box toolbox (see Appendix B for more informations).

Trace length l ρ(Πl)1/l |ρ(Πl)1/l − ρ(G,Σ)|/ρ(G,Σ)
1 2.2063 1.6580
2 2.2063 1.6580
3 1.1160 0.3445
4 0.98611 0.1880
5 0.8925 0.0751

Table 5.2: l-liftings approximations of the CJSR and the corresponding relative error for
l = 1, . . . , 5.

a

b

c

e

d

1

2

3

4

5

Figure 5.10: Automaton G for Example 5.2.5. Cycle with 5 nodes.

Numerical experiments verify the assertions made in Section 5.1. These
simulations show the limitations of the CQLF in certain cases, depending on the
order of the lifting, and give a first overview on the speed of each method.

5.2.2 Further analysis

In this section, we will study the influence of some parameter present in Table 5.1 on
the results of each method. We will thus study the influence of the dimension and the
number of nodes. Unless otherwise stated, parameters remain the same as those exposed
in Table 5.1. Examples for each experiment are described in Appendix C.

Dimension The results of the simulations with dimensions ranging from n = 2 to n = 5
of the probabilistic upper bound, deterministic lower bound with MQLF method and
probabilistic upper bound with CQLF method are respectively depicted in Figure 5.11,
Figure 5.12 and Figure 5.13. One can observe that for both methods, a smaller dimension
allows faster for a better approximation. The shape of the lower bound is a direct
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consequence of Proposition 4.2.1. Concerning the CQLF method, this has already been
analyzed in [KBJT19, Section 5.1, Figure 5, Figure 6 and Figure 7]. The same analysis
can be made here. We can also observe that the CQLF method yields a much better
upper bound for the same values of N . This is particularly the case since we are in the
first case of Figure 5.1 (see Section 5.1 and Appendix C).

1000 2000 3000 4000 5000 6000
Number of observations N

100

101

102

103

MQLF upper bound
(G, )

n = 2
n = 3
n = 4
n = 5

Figure 5.11: Influence of the dimension on
the MQLF probabilistic upper bound. A
lower dimension allows for a better perfor-
mance.

1000 2000 3000 4000 5000 6000
Number of observations N

100

4 × 10 1

6 × 10 1

MQLF lower bound

(G, )
n = 2
n = 3
n = 4
n = 5

Figure 5.12: Influence of the dimension on
the MQLF deterministic lower bound. A
lower dimension improves the approxima-
tion.

1000 2000 3000 4000 5000 6000
Number of observations N

100

2 × 100

3 × 100

4 × 100

CQLF upper bound
(G, )

n = 2
n = 3
n = 4
n = 5

Figure 5.13: Influence of the dimension on the CQLF probabilistic upper bound. One
can observe the difference between n = 2 and larger dimensions.

Number of nodes Results of the simulations with numbers of nodes ranging from
|V | = 2 to |V | = 5 of the probabilistic upper bound and the deterministic lower bound
of the MQLF method are respectively depicted in Figure 5.14, Figure 5.15. Automata
for these examples are described in Appendix C. We did not perfom experiments for
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the CQLF method as the quantity |V | does not influence this bound. We can observe
that smaller automata (automata with less nodes) allow for a better probabilistic upper
bound, and thus a better approximate of the CJSR. As expected, the lower bound is not
impacted by the number of nodes.

1000 2000 3000 4000 5000 6000
Number of observations N

100

2 × 100

3 × 100

4 × 100

MQLF upper bound
(G, )

|V| = 2
|V| = 3
|V| = 4
|V| = 5

Figure 5.14: Influence of the number of
modes on the MQLF probabilistic upper
bound. An automaton with less nodes al-
lows for a better approximate of the CJSR.

1000 2000 3000 4000 5000 6000
Number of observations N

7 × 10 1

8 × 10 1

9 × 10 1

MQLF lower bound

(G, )
|V| = 2
|V| = 3
|V| = 4
|V| = 5

Figure 5.15: Influence of the number of
modes on the MQLF deterministic lower
bound. The number of nodes does not im-
pact the lower bound.
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Chapter 6

An application: multi-zone
building systems

In this chapter, we present an application inspired from [WBJ21], namely multi-zone
building systems (see e.g. [FLC16, CFM+19, BSH21]). We will consider a classical
Resistance-Capacitance model that allows to model heat exchange between multiple zones
in a building, with the presence of an air conditioning device. Some zone have doors, that
can be arbitrarily opened and closed. We will assume that the temperature is controlled
via the air conditoning device (via a model-based LQR controller, see Appendix A) to
quickly reach a target temperature.

We then suppose that the controller fails, and that the latter happens with some
constraints. We also assume that the model and the constraints are unknown. Although
the physics tell us that the temperature never explodes, we want to compute the
convergence rate of this closed-loop system. The problem is the latter: from harvested
data, with a user-defined confidence level, can we predict how fast the
temperature will converge to the target temperature? It is equivalent to derive
a probabilistic approximation of the CJSR of the considered system. We will use tools
derived in Chapter 3 and Chapter 4 in order to answer.

6.1 Presentation of the numerical example
In this section, we formally present the dynamical system tackled in this chapter.

6.1.1 Resistance-Capacitance model

Consider a building with n zones. Each zone is equiped with an air conditioning (AC
for short) device capable of sending a given air flow at a given temperature. The
thermal Resistance-Capacitance model (RC model for short) for this is the following
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[FLC16, BSH21]:

CiṪi(t) = T o − Ti(t)
Ro
i

+
∑

j∈[n]\{i}

Tj(t)− Ti(t)
Rji

+ ṁiCp(T s
i (t)− Ti(t)) + qi, (6.1)

for all zones i ∈ [n]. The quantities involved in the model (6.1) are explained and given
with their units Table 6.1.

Symbol Unit Physical quantity
Ci [kJK−1] Thermal capacitance of zone i
Ti(t) [K] Temperature of zone i at time t
T o [K] Temperature of outside environment
Rij [KkW−1] Thermal resistance between zone i and j
Ro
i [KkW−1] Thermal resistance between zone i and outside environment

ṁi [kgs−1] Flow rate into zone i
Cp [kJkg−1K−1] Specific heat capacity of air
T s
i (t) [K] Temperature of air sent by AC device to zone i at time t
qi [kJ/s] Thermal disturbance from internal loads

Table 6.1: Quantities involved in Equation (6.1).

A representation of this RC model is provided in Figure 6.1.

C1

C2

C3

T1 T2

T3

Ro1

Ro3

Ro2

R1,2

R1,3 R2,3

To

Q̇1
AC

Q̇3
AC

Q̇2
AC

Zone 1

Zone 3

Zone 2

Figure 6.1: Representation of the RC model corresponding to a multi-zone building
system with three zones. For i = 1, 2, 3, Q̇iAC = ṁiCp(T s

i − Ti) + qi.

As we focus on discrete-time switching systems in this thesis, we discretize the system.
Euler’s forward method (see [CFM+19] for more information about discretizations for
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building systems) yields

Ci
τ

(Ti(k+ 1)− Ti(k)) = T o − Ti(k)
Ro
i

+
∑

j∈[n]\{i}

Tj(k)− Ti(k)
Rji

+ ṁiCp(T s
i (k)− Ti(k)) + qi,

(6.2)
for all zones i ∈ [n], where τ is the time step for the forward method, i.e. t = kτ for
k ∈ Z. It yields that the considered system satistifes the following recurrence:

Ti(k + 1) = Ti(k)

+ τ

Ci

T o − Ti(k)
Ro
i

+
∑

j∈[n]\{i}

Tj(k)− Ti(k)
Rji

+ ṁiCp(T s
i (k)− Ti(k)) + qi

 , (6.3)

for all zones i ∈ [n].

The considered numerical values are written in Table 6.2.

Quantity Value
Ci, i = 1, 2, 3 1375 [kJK−1]
T o 305.15 [K]
R12 1.5 [KkW−1]
Ro
i , i = 1, 2 3 [KkW−1]

Ro
3 2.7 [KkW−1]

ṁi, i = 1, 2, 3 0.14 [kgs−1]
Cp 1.012 [kJkg−1K−1]
qi, i = 1, 2 0.1 [kJ/s]
q3 0.12 [kJ/s]

Table 6.2: Numerical values considered for the multi-zone building system example.

6.1.2 Input of the model

The only quantity that we can make vary in this model is T s
i (k) for all i, the temperature

given by the AC device. Suppose we want to reach a target temperature of T t [K] for all
zone i. By letting xi(k) = Ti(k)− T t, we can re-write Equation (6.3) as

xi(k + 1) = xi(k)

+ τ

Ci

(T o − T t)− xi(k)
Ro
i

+
∑

j∈[n]\{i}

xj(k)− xi(k)
Rji

+ ṁiCp(T s
i (k)− Ti(k)) + qi

 ,
(6.4)
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6.1. Presentation of the numerical example

or equivalently

xi(k + 1) = xi(k) + τ

Ci

∑
j∈[n]\{i}

xj(k)− xi(k)
Rji

− τ

Ci

xi(k)
Ro
i

+ τ

Ci

(
(T o − T t)

Ro
i

+ ṁiCp(T s
i (k)− Ti(k)) + qi

)
,

(6.5)

for all zones i ∈ [n].

Suppose we can measure the temperature Ti(t), then we can consider that, in order to
control the dynamical system written defined in Equation (6.1), for all zone i ∈ [n], the
input of the model is ui(k) := ṁiCp(T s

i (k)− Ti(k)) + (T o − T t)/Ro
i + qi, and the model

becomes

xi(k + 1) = xi(k) + τ

Ci

∑
j∈[Z]\{i}

xj(k)− xi(k)
Rji

− τ

Ci

xi(k)
Ro
i

+ τ

Ci
ui(k), (6.6)

for all zones i ∈ [n]. This model is an n-dimensional discrete-time input-output linear
system and can be written in the form

x(k + 1) = Ax(k) +Bu(k), (6.7)

with x(k) ∈ Rn, u(k) ∈ Rn, A ∈ Rn×n and B ∈ Rn×n.

6.1.3 Introduction of an arbitrary switching rule

We consider the building depicted in Figure 6.2.

Corridor (zone 3)

Office (zone 1) Office (zone 2)

R13 = 0.8 R23 = 0.8

R13 = 1.2 R23 = 1.2

u1(k) u2(k)

u3(k)

AC device AC device

AC device

Figure 6.2: Building considered as an example. It has three zones: two offices and one
corridor. The two offices have a door leading to the corridor. The fact that the door is
open or closed influences the parameters R13 = R31 and R12 = R21.

If the door of zone (office) i = 1, 2 is open, then the thermal resistance between office i
and the corridor Ri3 will drop from 1.2 [KkW−1] to 0.8 [KkW−1]. We suppose that the
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6.1. Presentation of the numerical example

doors can be opened and closed arbitrarily. It yields that the system is now a switching
system with an input. It has the form

x(k + 1) = Aσ̃(k)x(k) +Bu(k), (6.8)

where Aσ̃ can take four different values, respectively corresponding to the cases (closed,
closed), (open, closed), (closed, open) and (open, open). In this order, they are noted
A(c, c), A(o, c), A(c, o) and A(o, o). Thus,

Aσ̃(k) ∈ Σ̃ = {A1, A2, A3, A3} = {A(c, c), A(o, c), A(c, o), A(o, o)}. (6.9)

The switching is arbitrary, it means that each element σ̃(k) in a switching sequence
(σ̃(0), σ̃(1), . . . ) takes on arbitrary values in [m̃], where m̃ = 4.

In order to reach Ti(k) = T t for all zones i = 1, 2, 3, we consider static linear feedback
u(k) = Kx(t) for K ∈ Rn×n in the infinite horizon LQR problem. For more information
about the design of such a controller, we refer the reader to Appendix A. System (6.8)
becomes

x(k + 1) = (Aσ̃(k) +BK)x(k). (6.10)

We attract the attention of the reader on the fact that, for now, the setting is entirely
white-box and arbitrary. Constraints and data-driven analysis come in the following
sections.

6.1.4 Controller failures

The controller measures at each time step the differences between the real temperature
and the target temperature for each zone, i.e. the variable xi(t) for i = 1, 2, 3. Suppose
that the measures for the two offices can fail, and may measure the temperature as if it
had already reached the right temperature, i.e. xi(t) = 0. It is equivalent to consider
that, in addition to the real matrix K designed by solving the infinite horizon LQR
problem, the matrix K can takes on three other values: K(0) K(1), and K(2), respectively
corresponding to the cases where no controller work, only the first controller works, and
only the second controller works. The matrices K(1) and K(2) are the matrix K where
respectively the second and the first column is set to zeros, and K(0) is K where the two
first columns are set to zeros (see Appendix D for clarifications).

Following the definition of the considered system, we now consider sixteen different
matrices. Indeed, for each four possible switches of system (6.10), there are four different
ways for the controller to work. We define the new set of matrices as

Σ = {A(0)
(c, c), A

(0)
(o, c), A

(0)
(c, o), A

(0)
(o, o),

A
(1)
(c, c), A

(1)
(o, c), A

(1)
(c, o), A

(1)
(o, o),

A
(2)
(c, c), A

(2)
(o, c), A

(2)
(c, o), A

(2)
(o, o),

A(c, c), A(o, c), A(c, o), A(o, o)}

(6.11)
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And the dynamics of the new considered switching linear system is

x(k + 1) = Aσ(k)x(k), (6.12)

where Aσ(k) ∈ Σ.

We now consider the following constraint. Suppose that each time that the door of an
office is open, its AC controller fails, but with a time latency of τ , which is one time step
in the discretized model. For example, suppose that both doors are closed for some k,
both controller work fine. At time k + 1, the first door opens, the first AC controller
still works since it has a latency of one time step. At time k + 2, the doors are opened
arbitrarily, but it is guaranteed that the first controller does not work. We can model
these constraints with the automaton G depicted in Figure 6.3.

a b

cd

A(c, c)
A(o, c)

A(c, o)

A(o, o)

A
(2)
(c, c)

A
(2)
(o, c)

A
(2)
(c, o)

A
(2)
(o, o)A

(1)
(c, c)

A
(1)
(o, c)

A
(1)
(c, o)A

(1)
(o, o)

A
(0)
(c, c)

A
(0)
(o, c)

A
(0)
(c, o)

A
(0)
(o, o)

Figure 6.3: Automaton G modelling the constraints of considered multi-zone building
system example. If one door is open, then it is guaranteed that, at the next time step,
the corresponding controller does not work. For the sake of clarity, colors corresponding
to the different controller failures have been assigned.

The considered CSLS is thus S(G,Σ). As an illustration of the impact of the controller
in this case, we can find on Figure 6.4 an overview of the dynamics of the temperatures
for each zone in three cases: with no controller, with a non-failing LQR controller
(corresponding to the dynamics (6.10)), and with a failing LQR controller, corresponding
to the considered CSLS S(G,Σ).
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(a) Temperatures for k ∈ {1, . . . , 15}.
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(b) Temperatures for k ∈ {1, . . . , 100}.

Figure 6.4: Temperatures for three different controllers. Note that, in the case of
failing controller, we performed 20 simulations. In grey, the target temperature T t = 24
[C°]. Even in the constrained case, the temperatures seem to converge to the target
temperature.

As we can observe on Figure 6.4, even with AC failures, the temperature seems
to converge to the target temperature following a reasonable growth rate. Now
we will answer the question: "Is it possible for someone who does not have
access to the model, to derive probabilistic guarantees on the growth
rate of the true system?".

6.2 Data-driven growth rate approximation
In order to analyze the stability of S(G,Σ) in a data-driven fashion, we will use the
methods derived in Chapter 3 and Chapter 4. Indeed, the following propositions hold.
First, if l-steps CQLF are used:

Proposition 6.2.1. Suppose that a CSLS S(G,Σ) admits a l-steps CQLF ‖ ·‖P , P ∈ Sn
such that, for a fixed l > 0, and for all A ∈ Πl, there exists γ > 0 which satisfies

ATPA � γ2lP, (6.13)

then, for any x(0) ∈ Rn and any t ∈ N, there exists a constant C > 0 such that

‖x(lt)‖2 ≤ Cγlt‖x(0)‖2. (6.14)
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6.2. Data-driven growth rate approximation

And, if MQLFs are used:

Proposition 6.2.2. Suppose that a CSLS S(G(V,E),Σ) admits a set of MQLF {‖ ·
‖Pu , u ∈ V }, P ∈ Sn such that, for a fixed l > 0, and for all (u, v, σ) ∈ E, there exists
γ > 0 which satisfies

ATσPvAσ � γ2Pu, (6.15)

then, for any x(0) ∈ Rn and any t ∈ N, there exists a constant C > 0 such that

‖x(t)‖2 ≤ Cγt‖x(0)‖2 (6.16)

Proofs for Proposition 6.2.1 and Proposition 6.2.2 are given in Appendix E. Now let γ∗CQLF
and γ∗MQLF be the probabilistic upper bounds on the CJSR obtained with respectively
the l-steps CQLF and MQLF methods. It yields that, with a certain level of confidence,
for all x(0) ∈ Rn and t ∈ N, there exists a constant C such that

‖x(lt)‖2 ≤ C
(
min

{
γ∗CQLF, γ

∗
MQLF

})lt
‖x(0)‖2 (6.17)

γ∗CQLF and γ∗MQLF thus give guarantees on the growth rate of ‖x(t)‖2.

Going back to the building system, suppose we have access to a dataset of N = 50000
observations with l = 1. We want to find a 95%-sure approximation of the CJSR ρ(G,Σ)
with unknwon G and Σ. We thus compute the probabilistic upper bounds from the
CQLF and the MQLF methods1, and the deterministic lower bound from the MQLF
method. Results for N = 50000 can be found in Table 6.3. An illustration of the evolution
of the bounds for N ∈ [1000, 50000] can be found in Figure 6.5.

Deterministic lower bound 95%-sure upper bound
CQLF method / 0.8838
MQLF method 0.4879 6.3491

Table 6.3: Bounds found by the CQLF and MQLF methods for the considered building
systems with N = 50000 observations.

One can thus say with a confidence level of 95% that there exists a constant C > 0
such that the following holds:

‖x(t)‖2 ≤ C(0.8838)t‖x(0)‖2. (6.18)

In this case, this result tells us how fast the temperature will converge in each zones
to the target temperature with an unknown failing AC devide. More generally,
our methods have provided a probabilistic guarantee on the growth rate
of the state of an unknown CSLS.

1The "sub-confidence levels" are chosen such that they are equal. Thus (100% + β)/2 = 97, 5%.
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10000 20000 30000 40000 50000
Number of observations N

100

101

102

95% stability certificate
CQLF method upper bound ( = 95%)
MQLF method lower bound
MQLF method upper bound ( = 95%)

Figure 6.5: MQLF and CQLF upper bounds, as well as the MQLF lower bound for the
multi-zone building system with constrained failing controller.

60



61



Conclusions

In this thesis, inspired by existing results [KBJT19, BJW21, RWJ21], we took a step
toward complexity and extended the scope of data-driven analysis for hybrid
systems. In particular, we provided two methods to derive probabilistic guarantees
for the stability of data-driven constrained switching linear systems, a more general
framework than arbitrary switching linear systems. We think that this constitutes an
important advance of the state of the art for two reasons. First, in the context of the
Cyber-Physical revolution, hybrid systems prove to be central in more and more
applications. Second, as the complexity of such systems dramatically increases, we
believe in the importance of developing data-driven techniques for hybrid
systems. Moreover, we believe that this work can serve as a basis for a more global
further research effort, for constrained switching linear systems or even more complex
models.

Summary of the contributions

We started in Part I by introducing all the important concepts and tools to study stability
of switching linear systems. More precisely, we presented model-based techniques for
approximating the JSR and CJSR, in order to derive stability sufficient conditions. We
also presented existing data-driven techniques for ASLSs.

Our main theoretical contributions state in Part II, where we build two data-driven
stability techniques for CSLSs on top of existing results. In Chapter 3, we proposed a
lifting result allowing us to reduce the computation of the CJSR of a given CSLS to
the computation of a simpler JSR. We then build on top of [KBJT19, BJW21] the main
theorem of Chapter 3, which provides a first method based on common quadratic
Lyapunov functions to derive probabilistic guarantees for the stability of
CSLSs. We claimed that in case of uniformity on the distribution of switching sequences,
we can investigate further the obtained bound. In particular, we showed that a smaller
entropy of the automaton allows for a better guarantee about the stability.

In Chapter 4, by considering that more information can be harvested, we leveraged
the sensitivity analysis approach to propose a method using another tool, namely
multiple quadratic Lyapunov functions. We used the CJSR to approximate the
black-box stability of CSLSs, and generalized results of [RWJ21]. In particular, we
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provided a first deterministic lower bound on the CJSR, as well as another probabilistic
upper bound on it.

Comparaisons and examples are provided in Part III. In Chapter 5, we compared the
two derived methods. We first discussed the limitations of each method compared to
each other. In particular, we highlighted the limitations of the CQLF method compared
to the MQLF method, depending on the nature of the considered CSLS. For numerical
verification, we implemented a Julia toolbox. We then proceeded to a quantitative
analysis of both methods. We verified the limitations of the CQLF method, and we
analyzed further the influence of some parameters on both methods.

Finally, in Chapter 6, we provided a concrete example. We considered a multi-
zone building system, whose zone temperatures are controlled by a model-based
designed LQR controller. We then considered that the AC is subject to fails, with certain
constraints. We then used our methods for CSLSs to answer the following question:
suppose someone does not have access to the model but but only to a set of observations,
can he assert with a certain confidence level that the system will converge with a certain
rate to the target temperature? We concluded about the stability of the considered
example.

Research perspectives

We think that our work can be followed by a further research effort, for CSLSs or even
more complex hybrid systems.

First of all, we think that we can use existing tools to make the methods derived in
this thesis less conservative. For example, our techniques are limited to quadratic
Lyapunov functions. In this context, Sums-of-Squares techniques have proven to be
useful for white-box stability analysis of CSLS [LJP16, LPJ19, PEDJ16], as well as for
the data-driven stability analysis of ASLS [RWJ21]. As our MQLF method is based on
[RWJ21], we think that it can be fairly easily be extended to Sums-of-Squares techniques.
In the context of improving existing bounds, it is important to note that, for now, they
rely on prior knowledge, which may not be available in a real data-driven application. In
this purpose, it might be useful to tackle the topic of learning automaton information
from observations (see e.g. [Ang87]). Finally, for the existing bounds, it can be useful to
provide a computational complexity analysis. As the computations may take a lot of
time, it can also be interesting to think about a real-time implementation, thus updating
our bounds once new observations are available without having to re-compute an entire
solution.

Also, we think that we can explore other lifting ideas as the one presented in Chapter 3,
to derive other methods that may be better than the ones derived in this thesis. For
example, for now, the MQLF method does not support l-steps horizon observations for
l > 1. The concept of l-product lifting introduced in [PEDJ16] might be useful in this
purpose. Other lifting to ASLSs have also been introduced in the model-based setting,
and remain to be explored (see e.g. [XA20]).
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In this thesis, we only focused on data-driven stability analysis of complex hybrid systems.
The ideas exposed above are thus not an exhaustive list of possible improvement, as
data-driven control of hybrid systems is a much wider field. Recently, data-driven
stabilization and controller design (e.g. infinite-horizon LQR controller [KBM96])
have been proposed for ASLSs [WBJ21]. More complex hybrid systems such as CSLSs
require more advanced controller design [DRI02, LD06, ELD14], and, to the best of our
knowledge, data-driven controller design for such systems remains an open research field.
Other types of controller such as MPC controller can also be explored (see [CB07] for an
introduction).

Finally, another step towards complexity can be taken. Markovian Jump Linear
Systems (MJLSs) are a popular and quite general model for complex dynamical systems
with stochastic behaviour: they constitute one of the main models for stochastic hybrid
systems (see the book [CMF05] or the article [FLF95] for a formal introduction and a
historical overview). Apart from a few recent works [HS19, BTSB18] the field of MJLSs
has not received much attention in the data-driven framework.
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Appendix A

Design of infinite-horizon LQR
feedback for ASLSs

Consider a discrete-time input-output switching system of the form

x(t+ 1) = Aσ(t)x(t) +Bu(t), (A.1)

with x(t) ∈ Rn, u(t) ∈ Rd, Aσ(t) ∈ Rn×n and B ∈ Rn×d. Aσ(t) ∈ Σ = {A1, . . . , Am},
and the switching is arbitrary, it means that each element σ(t) in a switching sequence
(σ(0), σ(1), . . . ) takes on arbitrary values in [m].

Let x = (x(0), x(1), . . . ), u = (u(0), u(1), . . . ) and σ = (σ(0), σ(1), . . . ) be respectively
one infinite-horizon state, input and switching sequences. For some stage costs Q � 0
and P � 0, consider the following quadratic cost:

J∞(x,u,σ) :=
∞∑
t=0

x(t)TQx(t) + u(t)TRu(t). (A.2)

The inifinite-horizon LQR problem is the problem of finding

J∗(x(0)) = inf
u

sup
σ∈[m]N

J∞(x,u,σ). (A.3)

We restrict ourselves to a static feedback u(t) = Kx(t) for some matrix K ∈ Rd×n. It
can be shown (see e.g. [LR06] or [Ran06]), that if there are matrices (K,P ) satisfying
the following set of LMIs:

∀A ∈ Σ, (A+BK)TP (A+BK) � P −Q−KTRK, (A.4)

then J∗(x) ≤ ‖x(0)‖2P for all x(0) ∈ Rn. An additional manipulation using the Schur
complement allows to say that, letting S = P−1 and Y = KS, (see [KBM96, Theorem 1]),
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solving LMIs (A.4) is equivalent to solve the following optimization problem:

min
S,Y
− log det(S) (A.5a)

∀A ∈ Σ :


S SAT + Y TBT S Y T

AS +BY S 0 0
S 0 Q−1 0
Y 0 0 R−1

 � 0. (A.5b)

Defintions of S and Y then allow to recover K and P as P = S−1 and K = Y S−1 = Y P .
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Appendix B

Julia code overview

A global overview of the source code can be found in Figure B.1. The entire source
code and reproducible examples are located at https://github.com/adrienbanse/
DataDrivenCSLS.jl.

DataDrivenCSLS.jl

trajectories.jl whitebox.jl

bounds.jl

White-box

Black-box

Simulations
Model-based analysis and

design

Data-driven analysis

Figure B.1: Overview of the source code. There are three files around the main module
DataDrivenCSLS.jl. Two of them, trajectories.jl and whitebox.jl allows to simu-
late and analyze in the white-box setting (to assess the black-box methods). The last one,
bounds.jl contains the implementation of the CQLF and MQLF methods themselves.

We will now give a brief description for each implemented function. The trajectories.jl
file allows to simulate CSLSs. It contains the following functions:

• generate_random_matrix: generates random matrices with unit spectral radius,
i.e. generates A such that ρ(A) = 1;
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• generate_random_sphere: generates N points uniformly distributed on the unit
sphere S;

• create_arbitrary_automaton: returns a flower of specified order m, i.e. an
automaton with one node and m self-loops;

• generates_trajectories: generates N trajectories for a specified CSLS S(G,Σ)
with specified initial state x0; also the possibility to simulate a dynamical system
xt+1 = Aσtxt + v where v ∈ Rn is a constant additional term, and where Aσt ∈ Σ
and σt is constrained by G.

The whitebox.jl file allows to design and analyze CSLSs in the white-box setting. It
contains the following functions:

• white_box_LQR: design a white-box LQR controller for CSLSs as explained in
Appendix A;

• white_box_CJSR_upper_bound: gives an upper bound on the CJSR of a white-box
CSLS;

• white_box_JSR: gives an approximation on the JSR of a white-box ASLS.

The bounds.jl constitutes our main practical contribution. It provides tools to approxi-
mate the CJSR from a finite set of observations. First, some mathematical quantities are
implemented:

• δ: spherical cap such as defined in Equation 2.7;

• d: quantity d(ε) =
√

2− 2δ(ε) such as defined in Theorem 4.3.3.

In bounds.jl, the CQLF method such as described in Chapter 3 is implemented with
the following functions:

• find_P_CQLF: optimization model that allows to find the matrix P such as defined
in constraint (3.4b), such that LMIs (3.4c) hold for a specified value of γ;

• min_γ_CQLF: bissection procedure allowing to find the tightest γ such that there is
a matrix P found by find_P_CQLF, it solves optimization problem (3.4) without
the tie-breaking rule;

• tie_breaking_frobenius: implements the tie-breaking rule defined by multi-
objective (3.4a), find the matrix P with minimal Frobenius norm such that
LMIs (3.4c) hold for fixed optimal γ;

• upper_bound_CQLF: returns the CQLF upper bound such as defined in Theo-
rem 3.2.2 from a finite set of observations.

Finally, the MQLF method is also implemented in bounds.jl. The following functions
constitute the method:
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• find_P_MQLF: optimization model that allows to find the set of matrices {Pu, u ∈ V }
such as defined in constraint (4.6b), such that LMIs (4.6c) hold for a specified value
of γ;

• min_γ_MQLF: bissection procedure allowing to find the tightest γ such that there
is a set of matrices {Pu, u ∈ V } found by find_P_MQLF, it solves optimization
problem (4.6);

• upper_bound_MQLF_one_sample: computes the MQLF upper bound (4.29) (see
Corollary 4.4.1) with only one sample;

• lower_bound_MQLF: computes the MQLF lower bound such as defined in Proposi-
tion 4.2.1;

• bounds_MQLF: returns the MQLF lower and upper bounds such as respectively
defined in Proposition 4.2.1 and Corollary 4.4.1 from a finite set of observations.
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Appendix C

Examples involved in Chapter 5

First, note that for the sake of readibility, we do not present the set of matrices here. We
thus invite the reader to check the source code in appendix to this document1.

To study the dimensions, we defined four CSLSs S(G,Σi) with G as depicted in Figure 3.2,
and Σi ⊂ Ri×i, with i = 2, 3, 4, 5.

To study the number of nodes, we defined four CSLSs S(Gi,Σ), where Gi(Vi, Ei), with
|Vi| = i for i = 2, 3, 4, 5 are as respectively depicted in Figure C.1, Figure C.2, Figure C.3
and Figure C.4.

a b

2

2
1

Figure C.1: Automaton G2 with 2 nodes for
number of nodes analysis of Section 5.2.2.

a b c

2

2

2

2
1

Figure C.2: Automaton G3 with 3 nodes for
number of nodes analysis of Section 5.2.2.

a b c

d

2

2

2

2
22

1

Figure C.3: Automaton G4 with 4 nodes for
number of nodes analysis of Section 5.2.2.

a b c
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2

2

2

2
22

2

2

1

Figure C.4: Automaton G5 with 5 nodes for
number of nodes analysis of Section 5.2.2.

1Also available at https://github.com/adrienbanse/DataDrivenCSLS.jl.
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Appendix D

Equivalence between described
failures and considered matrices in
Section 6.1.4

Suppose without loss of generality that the controller receives measure x1(k) = 0 for
some k. Then

u(k) = Kx(k)

=

K11x1(k) +K12x2(k) +K13x3(k)
K21x1(k) +K22x2(k) +K23x3(k)
K31x1(k) +K32x2(k) +K33x3(k)


=

K12x2(k) +K13x3(k)
K22x2(k) +K23x3(k)
K32x2(k) +K33x3(k)

 .
(D.1)

Thus, using the same notations as in Equation (6.10), if one wants to model the fact that
only the second controller works, if is equivalent to consider the switching linear system

x(k + 1) = (Aσ +BK(2))x(k), (D.2)

where

K(2) =

0 K12 K13
0 K22 K23
0 K23 K33

 . (D.3)

A very similar analysis can be done for modelling K(0) and K(1). And one can consider
that the matrix K switches in Equation (6.10) to model that the each controller may fail
from time to time.
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Appendix E

Proofs of Proposition 6.2.1 and
Proposition 6.2.2

We first prove Proposition 6.2.1:

Proof. Suppose there are γ > 0, P ∈ Sn such that, for a fixed l > 0, and for all A ∈ Πl,
LMIs ATPA � γ2lP hold. Then for all x ∈ Rn, xATPAx ≤ γ2lxTPx.

Now, for all x(0) ∈ Rn \ {0}, x(lt) = At−1 . . .A0x(0), with Ai ∈ Πl for i = 0, . . . , t− 1.
It yields x(lt)TPx(lt) ≤ γ2ltx(0)TPx(0).

Now, since P ∈ Sn, λmin(P )In � P � λmax(P )In, with λmin(P ) and λmax(P ) respectively
the minimal and maximal eigenvalues of P . It follows that, for all x ∈ Rn, λmin(P )‖x‖22 ≤
xTPx ≤ λmax‖x‖22. And thus:

λmin(P )‖x(lt)‖22 ≤ x(lt)TPx(lt) ≤ γ2ltx(0)TPx(0) ≤ λmax(P )γ2lt‖x(0)‖22, (E.1)

which yields ‖x(lt)‖2 ≤ Cγlt‖x(0)‖2 with C =
√
λmax(P )/λmin(P ).

The proof of Proposition 6.2.2 follows the same line as the proof of Proposition 6.2.1:

Proof. First, for any x(0) ∈ Rn \ {0}, x(t) = Aσ(t−1) . . . Aσ(0)x(0) for (σ(t− 1), . . . , σ(0))
a word of length t accepted by G(V,E). Since LMIs ATσPvAσ ≤ γ2Pu hold for all
(u, v, σ) ∈ E, for any t ∈ N, there are u,w ∈ V such that x(t)TPwx(t) ≤ γ2tx(0)TPux(0),
with u and w respectively the nodes at the beginning and the end of a length t path
in G(V, E). With a very similar reasoning as above, it allows us to conclude that
‖x(t)‖2 ≤ Cγt‖x(0)‖2 with C =

√
λmax(Pu)/λmin(Pw).
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