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Abstract: We consider stability analysis of constrained switching linear systems in which the
dynamics is unknown and whose switching signal is constrained by an automaton. We propose
a data-driven Lyapunov framework for providing probabilistic stability guarantees based on
data harvested from observations of the system. By generalizing previous results on arbitrary
switching linear systems, we show that, by sampling a finite number of observations, we are
able to construct an approximate Lyapunov function for the underlying system. Moreover, we
show that the entropy of the language accepted by the automaton allows to bound the number
of samples needed in order to reach some pre-specified accuracy.
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1. INTRODUCTION

In this paper we address the problem of finding proba-
bilistic guarantees for the stability of constrained switching
linear systems whose dynamics is unknown.

Switching systems. We consider discrete-time switching
linear systems (SLS ) defined by a set A = {Ai, }i∈{1,...,m}
of m matrices. Their dynamics is given by the following
equation:

xt+1 = Aσ(t)xt (1)

for any t ∈ N, where xt ∈ Rn and σ(t) ∈ {1, . . . ,m} are
respectively the state and the mode at time t. The sequence
(σ(0), σ(1), . . . ) ⊆ {1, . . . ,m}N is the switching sequence.

Switching linear systems are an important family of hybrid
systems which often arise in Cyber-Physical systems (see
Tabuada (2009)). Indeed, the interaction between continu-
ous and discrete dynamics causes hybrid behaviors which
makes the stability analysis challenging. In recent years,
many model-based stability analysis techniques have been
proposed (see Lin and Antsaklis (2009) and references
therein, or Jungers (2009)).

A constrained switching linear system (CSLS ) is a switch-
ing linear system with logical rules on its switching signal.
We represent these rules by an automaton. The stabil-
ity of CSLS has also been studied extensively (see e.g.
Dai (2011), Philippe et al. (2016) and Xu and Acikmese
(2020)). In particular, we are interested in asymptotic
stability of CSLS, whose definition is given as follows.
A CSLS whose dynamics is given by (1) is said to be
asymptotically stable (or stable, for short) if for all x0 ∈ Rn,

lim
t→∞

xt = 0. (2)

Data-driven approach. In many practical applications,
the engineer cannot rely on having a model, but rather has
to analyze stability in a data-driven fashion. Most classical
data-driven methods (see e.g. Karimi and Kammer (2017),
Hjalmarsson et al. (1998) and Campi et al. (2003)) are lim-
ited to linear systems and based on classical identification
and frequency-domain approaches. These methods may
not be well suited for complex systems such as constrained
switching linear systems.

In order to tackle hybrid behaviors in switching systems,
novel data-driven stability analysis methods have been
recently developed based on scenario optimization (see
Kenanian et al. (2019), Berger et al. (2021) and Rubbens
et al. (2021)). In this paper we seek to take one more
step towards complexity. To do that, we develop a data-
driven method for providing probabilistic guarantees on
the stability of noise-free constrained switching linear
systems.

Outline. The rest of this paper is organized in two parts.
We introduce the problem that we tackle in Section 2. All
concepts needed to this end are introduced in Section 2.1,
and the problem is formulated in Section 2.2. In Section 3,
we propose a lifting result allowing us to reduce the
computation of the constrained joint spectral radius to the
joint spectral radius of a certain set of matrices. Moreover,
we state the main theorem of this paper, which extends
data-driven results from Berger et al. (2021) to constrained
switching linear systems. Finally, we investigate further
the obtained generalization. We show that the notion of
entropy can be used to characterize the number of samples
needed to reach a specified guarantee on the stability. We
will show that, under some assumptions, a smaller entropy
allows for a better probabilistic guarantee.



2. PROBLEM SETTING

2.1 Preliminaries

In this subsection, we introduce the notions necessary to
formally present the problem that we solve in this paper.

Joint spectral radius. For arbitrary SLS, given a set of
matrices A = {A1, . . . , Am} ⊆ Rn×n, the quantity

ρ(A) = lim
t→∞

max
σ(·)∈{1,...,m}

‖Aσ(t−1) . . . Aσ(0)‖1/t (3)

is known as the joint spectral radius (JSR) of a switching
linear system defined on A. The JSR of an switching
system rules the stability of the latter:

Proposition 1. (Jungers (2009), Corollary 1.1.). Given a
set of matrices A, the switching linear system defined by
A is asymptotically stable if and only if ρ(A) < 1.

It is a well known fact that for any stable arbitrary switch-
ing linear system, there is a norm acting as a common
Lyapunov function (see Jungers (2009), Proposition 1.4.).
The following proposition gives a sufficient condition for
stability, by restricting the search to common quadratic
Lyapunov functions (CQLF ).

Proposition 2. (Jungers (2009), Proposition 2.8). Consider
a finite set of matrices A. If there exists γ ≥ 0 and a
symmetric matrix P � 0 such that ATPA � γ2P holds
for any matrix A ∈ A, then ρ(A) ≤ γ.

Constrained joint spectral radius. First, we give the
definition of an automaton. An automaton is a strongly
connected, directed and labelled graph G(V,E) with V
the set of nodes and E the set of edges. Note that we
drop the explicit writing of V and E when it is clear
from the context. The edge (v, w, σ) ∈ E between two
nodes v, w ∈ V carries the label σ ∈ {1, . . . ,m}, which
maps to a mode of the switching system. A sequence of
labels (σ(0), σ(1), . . . ) is a word in the language accepted
by the automaton G if there is a path in G carrying the
sequence as the succession of the labels on its edges. A
CSLS defined on the set of matrices Σ and constrained by
the automaton G is noted S(G,Σ). We define the set of
all possible products of matrices in Σ of length l given an
automaton G as

Πl = {Aσ(l−1)Aσ(l−2) . . . Aσ(0) :

(σ(0), σ(1), . . . , σ(l − 1)) is a word of G}. (4)

The constrained joint spectral radius (CJSR), which is a
generalization of the JSR to CSLS, was first introduced in
Dai (2011). Given a set of matrices Σ and an automaton
G, the CJSR of the constrained switching linear system
S(G,Σ) is defined as

ρ(G,Σ) = lim
t→∞

max
{
‖A‖1/t : A ∈ Πt

}
. (5)

In the same way, the stability of a constrained switching
linear system is characterized by its CJSR:

Proposition 3. (Dai (2011), Corollary 2.8.). Given a set
of matrices Σ and an automaton G, the constrained
switching linear system S(G,Σ) is asymptotically stable
if and only if ρ(G,Σ) < 1.

2.2 Problem formulation

We will now formally present the problem that we solve in
this paper.

Model-based setting. Consider a given constrained
switching linear system S(G,Σ) with Σ ⊆ Rn×n. Let
∆ = S × Πl with S ⊆ Rn the unit sphere and Πl the
set of all admissible products of length l. We introduce the
following optimization problem 1 (see Berger et al. (2021)):

P(∆) : min
P∈Rn×n

γ≥0

(γ, ||P ||2F )

s.t. P ∈ X :=
{
P : I � P � CI, P = PT

}
,

(Ax)TP (Ax) ≤ γ2lxTPx ∀(x,A) ∈ ∆,

(6)

for a large C ∈ R≥0, where ‖ · ‖F is the Frobenius norm.
We denote (γ∗(∆), P ∗(∆)) as the solution of optimization
problem (6).

Following Proposition 2, Program (6) allows us to study
stability in a model-based setting i.e., when ∆ is known.
Indeed if γ < 1, then the ellipsoidal norm ‖ · ‖P∗(∆) is a
CQLF for the considered CSLS (Jungers, 2009). Observe
that, in addition to the problem of Proposition 2, a tie-
breaking rule is defined in Program (6). This tie-breaking
rule allows for improving the probabilistic guarantees we
obtain in Theorem 5 (see Kenanian et al. (2019) for
details). A constraint P � CI is also added to ensure that
the set of feasible P is compact, so that the existence of a
solution is guaranteed 2 .

Data-driven setting. In this work, we analyze the same
problem in a data-driven framework: we assume that the
system is not known (i.e., A is not known in Program (6)),
but that we sample N trajectories of length l of a system
S(G,Σ). The i-th trajectory is noted (xi,0, . . . , xi,l) for i ∈
{1, . . . , N}. The trajectories are assumed to be generated
from initial states xi,0 drawn randomly, uniformly and
independently from S, the unit sphere.

For each trajectory i ∈ {1, . . . , N}, the l matrices are
generated from the automaton G(V,E) in the following
way. An initial state u0 is drawn randomly and uniformly
from V . Then a random walk of length l is performed on
G, where, from uj ∈ V , the next state uj+1 is drawn
randomly, uniformly and independently from the set of
its out-neighbours {uj+1 ∈ V : (uj , uj+1, σi(j) ∈ E} where
σi(j) is the label corresponding to the edge linking uj and
uj+1. The sequence of nodes (u0, . . . , uj , uj+1, . . . , ul) form
a switching sequence σi(0), . . . , σi(l−1), which maps to the
matrices Aσi(0), . . . , Aσi(l−1).

We define the set of N observations ωN as

ωN = {(xi,0,Ai), i = 1, . . . , N} (7)

where Ai = Aσi(l−1) . . . Aσi(0) ∈ Πl. Note that the
observations in ωN are assumed to be noise-free.

1 We note min(f(x), g(x)) the multiobjective optimization problem
where g(x) is used as a tie-breaking rule. That is, the objective is to
minimize the function f(x), and, in case there are several optimizers,
the solution is the one which minimizes g(x). Observe that the latter
is unique because the problem is quasi-convex, and because ‖ · ‖ is a
strongly convex function.
2 For more details about these additions, see Berger et al. (2021).



We define P = Px×Pσ the probability measure on ∆ with
Px the uniform distribution on S and Pσ the probability
distribution describing the distribution of paths in Πl as
explained above. Note that Pσ is not necessarily a uniform
measure.

Now, for a given set ωN , let us define the sampled opti-
mization problem P(ωN ) associated to P:

P(ωN ) : min
P∈Rn×n

γ≥0

(γ, ||P ||2F )

s.t. P ∈ X :=
{
P : I � P � CI, P = PT

}
,

(Ax)TP (Ax) ≤ γ2lxTPx ∀(x,A) ∈ ωN ,

(8)

We denote (γ∗(ωN ), P ∗(ωN )) as the solution of optimiza-
tion problem (8), and Cost(ωN ) its optimal cost. The
problem P(ωN ) defined in Program (6) is the data-driven
version of the optimization problem P(∆) defined in Pro-
gram (8). The issue that we tackle in this paper is the in-
ference of γ∗(∆), the solution of optimization problem (6)
from (γ∗(ωN ), P ∗(ωN )) with a certain user-defined level of
confidence.

3. MAIN RESULTS

In this section, we present our main results. First, in
Proposition 4 given an automaton G and a set of matrices
Σ, we show that the CJSR can be bounded by the classical
JSR of the set of all admissible products of a given
length Πl. Even though other reductions of the CJSR
computation problems to a simpler JSR have already
been proposed in the literature (see e.g. Dai (2011) and
Philippe et al. (2016)), to the best of our knowledge,
Proposition 4 is new, and will be useful for our purposes.
Second, we use this result in order to derive a probabilistic
guarantee allowing to relate the data-driven problem (8)
to the model-based problem (6). This guarantee is given
in Theorem 5.

Proposition 4. For all l > 0, given an automaton G and a
set of matrices Σ, the CJSR of S(G,Σ) and the JSR of
the switching linear system defined by Πl satisfy

ρ(G,Σ) ≤ ρ(Πl)
1/l. (9)

Moreover, the equality holds asymptotically i.e.,

ρ(G,Σ) = lim
l→∞

ρ(Πl)
1/l. (10)

Proposition 4 allows us to reduce the problem of approxi-
mating the CJSR to the problem of approximating the JSR
of another arbitrary switching linear system. Therefore
we can generalize previous data-driven works on arbitrary
systems. In particular, we draw our results on top of
Berger et al. (2021) in order to obtain data-driven stability
guarantees for constrained systems.

We remark that the data-driven problem (8) is a quasi-
linear optimization problem, as defined in (Berger et al.,
2021, Equation 1). Thus, a very similar analysis as in
Berger et al. (2021), based on scenario-approach results
Calafiore (2010), can be done. First, we recall the definition
of a Barabanov matrix (see Berger et al. (2021), Defintion
7). A matrix A ∈ Rn×n is said to be Barabanov if there
exists a symmetric matrix P � 0 and γ ≥ 0 such that
ATPA = γ2P .

Given Proposition 3, the following theorem generalizes
Corollary 14 of Berger et al. (2021). It gives probabilistic
guarantees for the stability of a constrained switching
linear system. In the following theorem, Φ(·, a, b) denotes
the regularized incomplete beta function for the two pa-
rameters a, b ∈ N (see Kenanian et al. (2019), Definition
2).

Theorem 5. Consider an automaton G, a set of matrices
Σ ⊆ Rn×n, samples ωN ⊂ ∆ obtained as explained in
Section 2.2, a fixed length l > 0 and N ≥ d := n(n+ 1)/2.
Suppose Πl contains no Barabanov matrices. Consider
problem P (ωN ) with solutions γ∗(ωN ) and P ∗(ωN ). Then,
for a given level of confidence β ∈ (0, 1),

P

({
ωN ∈ ∆N : ρ(G,Σ) ≤ γ∗(ωN )

l
√
δ(β, ωN )

})
≥ β, (11)

and the function δ(β, ωN ) takes the form√
1− Φ−1(ε(β,N)κ(P ∗(ωN ))/pl,min, (n− 1)/2, 1/2).

(12)
where pl,min is the minimal probability of all matrices in

Πl, κ(P ) =
√

det(P )/λmin(P )n, and ε(β,N) takes the
closed form

ε(β,N) = 1− Φ(1− β, d+ 1, N − d). (13)

Theorem 5 provides a general way of obtaining proba-
bilistic stability guarantees. Indeed, for a given confidence
level β, if one computes an upper bound (11) strictly less
than 1, then following Proposition 3, stability holds with
probability at least β.

We now show how one can use it in practice, by deriving
a few corollaries. The following corollary holds if the
distribution of drawing a product in Πl is uniform.

Corollary 6. Suppose Pσ is a uniform measure. Then the
function δ(β, ωN ) in Theorem 5 can be written√

1− Φ−1(ε(β,N)|Πl|κ(P ∗(ωN )), (n− 1)/2, 1/2). (14)

We now show that we can push further our analysis of the
upper bound expressed in Corollary 6 by using the notion
of entropy (Lind and Marcus, 1995, Definition 4.1.1). Let
|LG,l| be the language accepted by G restricted to length
l. The entropy h(G) of G is the growth rate of |LG,l| i.e.,

h(G) = lim
l→∞

log2 |LG,l|
l

. (15)

Since |Πl| ≤ |LG,l|, the definition of the entropy gives the
following corollary.

Corollary 7. For l → ∞, the function δ(β, ωN ) in Corol-
lary 6 can be written

lim
l→∞

√
1− Φ−1(ε(β,N)2lh(G)κ(P ∗(ωN )), (n− 1)/2, 1/2).

(16)

Corollary 7 provides an asymptotic estimate of the prob-
abilistic upper bound in Theorem 5, as a function of the
entropy of the automaton G. One can see that an automa-
ton with small entropy allows for a better estimate of the
CJSR, for a fixed number of samples. This is illustrated in
Figure 1.

Now we show that we can also derive a practical bound
for any finite l > 0, unlike Corollary 7 which holds
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Fig. 1. Shape of the factor 1/ l
√
δ(β, ωN ) in Theorem 5 with

respect to the entropy, for a confidence level β = 95%,
a large l (here l = 50) and n = 2. One can see that
this factor converges to 1 as N increases, and that a
smaller entropy allows to converge faster.

asymptotically. For this we use classical results from graph
theory.

Proposition 8. Let A be the adjacency matrix of some au-
tomaton G(V,E). Let λ1 ≤ · · · ≤ λ|V | be the eigenvalues
of A. Assume A is diagonalizable. Then for any l ≥ 0,
|Πl| ≤ |V |λln.

Proposition 8 directly gives the following corollary.

Corollary 9. Let A be the adjacency matrix of some au-
tomaton G(V,E) Let λ1 ≤ · · · ≤ λ|V | be the eigenvalues
of A. Assume A is diagonalizable. Then for any l > 0, the
function δ(β, ωN ) in Corollary 6 can be written√

1− Φ−1(ε(β,N)|V |λlnκ(P ∗(ωN )), (n− 1)/2, 1/2).

(17)

Corollary 9 provides a probabilistic upper bound in The-
orem 5, as a function of the largest eigenvalue of the
adjacency matrix of G. One can see that an automaton
with a small largest eigenvalue allows for a better estimate
of the CJSR, for a fixed number of samples N and length
l.

4. CONCLUSION

In this work, we extended the scope of data-driven stability
analysis of hybrid systems by generalizing previous data-
driven results to the constrained case. In particular we
have built our results on the basis of Berger et al. (2021).

We proceeded as follows. We first proposed a lifting result
allowing us to reduce the computation of the CJSR of a
given CSLS to the computation of a simpler JSR. We then
stated the main theorem of this paper, which provides
probabilistic guarantees for the stability of a given noise-
free CSLS. Finally, we claimed that in case of uniformity on
the distribution of switching sequences, we can investigate
further the obtained bound. We showed that a smaller
entropy of the automaton allows for a better guarantee
about the stability.

In further research, we plan to extend this type of method
to noisy observations. We also plan to investigate different
approaches. For example, getting rid of the lifting result
would allow to reduce the conservativism introduced by
the latter, i.e. the gap between the lifted JSR ρ(Πl)

1/l

and the true CJSR ρ(G,Σ) in (9). In this regard we
plan to directly approximate multiple Lyapunov functions
(Philippe and Jungers, 2015, Definition 2).
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